Applied Biological Chemistry

, Volume 60, Issue 4, pp 411–418 | Cite as

Pharmacological effect of Rubus ulmifolius Schott as antihyperglycemic and antihyperlipidemic on streptozotocin (STZ)-induced albino mice

  • Khalil Akhtar
  • Syed Wadood Ali Shah
  • Assar Ali Shah
  • Muhammad Shoaib
  • Syed Kashif Haleem
  • Nighat Sultana


The aim of present study was to evaluate the antihyperglycemic and antihyperlipidemic effects of aerial parts of Rubus ulmifolius Schott on streptozotocin (STZ)-induced diabetic albino mice. A total of 48-, 60-day-old either sex (male and female) albino mice were treated with, normal control; 2% Tween-80 suspension (diabetic control); glibenclamide (500 μg/kg/orally); RU methanol extract (150 mg/kg/orally) (RUCrd1); RU methanol extract (300 mg/kg/orally) (RUCrd2); RU chloroform extract (150 mg/kg/orally) (RUC); RU ethyl acetate extract (150 mg/kg/orally) (RUE); and RU butanol extract (150 mg/kg/orally) (RUB) for a period of 15 days. Diabetes was induced in albino mice by single intraperitoneal injection of streptozotocin (50 mg/kg/b/w). After 15 days, group treated with glibenclamide, RUCrd1, RUCrd2, RUC, RUE and RUB exhibited a significant (P > 0.05) decrease in blood glucose level as compared to diabetic control groups. The total cholesterol, triglycerides and low-density lipoproteins as well as serum creatinine level, serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase and alkaline phosphatase were also significantly (P > 0.05) decreased in glibenclamide, RUCrd1, RUCrd2, RUC, RUE and RUB groups albino mice as compared to diabetic control. It was concluded that Rubus ulmifolius Schott extract has positive effect as hypoglycemic and antihyperlipidemic on diabetic albino mice.


Albino mice Antihyperlipidemia Antihyperglycemic Rubus ulmifolius Schott Diabetes mellitus 



Low-density lipoproteins


High-density lipoproteins




Serum alkaline phosphatase


Serum glutamate pyruvate transaminase


Serum glutamate oxaloacetate transaminase





This is a self-funded study, not supported by any organization or any other funding source. We are grateful to Professor Dr Jehandar Shah, Ex Vice Chancellor Shaheed Benazir Bhutto University, Sheringal, Dir Upper (Taxonomist), who helped with the identification of the plant.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.


  1. 1.
    Ahmad W, Khan I, Khan MA, Ahmad M, Subhan F, Karim N (2014) Evaluation of antidiabetic and antihyperlipidemic activity of Artemisia indica linn (aeriel parts) in streptozotocin induced diabetic rats. J of Ethnopharmacol 151:618–623CrossRefGoogle Scholar
  2. 2.
    Sheetz MJ, King GL (2002) Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 288:2579–2588CrossRefGoogle Scholar
  3. 3.
    Ali N, Shaoib M, Shah SWA, Shah I, Shuaib M (2017) Pharmacological profile of the aerial parts of Rubus ulmifolius Schott. BMC Complement Altern Med 17:59CrossRefGoogle Scholar
  4. 4.
    Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441CrossRefGoogle Scholar
  5. 5.
    Dirlewanger E, Cosson P, Tavaud M, Aranzana M, Poizat C, Zanetto A, Laigret F (2002) Development of microsatellite markers in peach [Prunuspersica (L.)Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunusavium L.). Theor Appl Genet 105:127–138CrossRefGoogle Scholar
  6. 6.
    Macheix JJ, Sapis JC, Fleuriet A, Lee CY (1991) Phenolic compounds and polyphenoloxidase in relation to browning in grapes and wines. Crit Rev Food Sci Nutr 30:441–486CrossRefGoogle Scholar
  7. 7.
    Mazur WM, Uehara M, Wähälä K, Adlercreutz H (2000) Phyto-oestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberry-meal in human subjects. Br J Nutr 83:381–387Google Scholar
  8. 8.
    Deguchi Y, Miyazaki K (2010) Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extract. Nutr Metab 7:9CrossRefGoogle Scholar
  9. 9.
    Guarrera PM (2005) Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia 76:1–25CrossRefGoogle Scholar
  10. 10.
    Patel AV, Rojas-Vera J, Dacke CG (2004) Therapeutic constituents and actions of Rubus species. Curr Med Chem 11:1501–1512CrossRefGoogle Scholar
  11. 11.
    Haq F (2012) The ethno botanical uses of medicinal plants of Allai Valley, Western Himalaya Pakistan. Int J Plant Res 2:21–34CrossRefGoogle Scholar
  12. 12.
    Gairola S, Sharma J, Bedi YS (2014) A cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use. J Ethnopharmacol 155:925–986CrossRefGoogle Scholar
  13. 13.
    Richards RME, Durham DG, Liu X (1994) Antibacterial activity of compounds from Rubus pinfaensis. Planta Med 60:471–473CrossRefGoogle Scholar
  14. 14.
    Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR (1990) Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia 33:462–464CrossRefGoogle Scholar
  15. 15.
    Mertz C, Cheynier V, Günata Z, Brat P (2007) Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J Agri Food Chem 55:8616–8624CrossRefGoogle Scholar
  16. 16.
    Ali L, Alsanius BW, Rosberg AK, Svensson B, Nielsen T, Olsson ME (2012) Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. Eur Food Res Technol 234:33–44CrossRefGoogle Scholar
  17. 17.
    Ahmad N, Anwar S, Fazal H, Abbasi BH (2013) Medicinal plants used in indigenous herapy by people of Madyan Valley in district Swat, Pakistan. Int J Med Aromat Plants 3:47–54Google Scholar
  18. 18.
    Manganelli RU, Tomei PE (1999) Ethnopharmacobotanical studies of the Tuscan Archipelago. J Ethnopharmacol 65:181–202CrossRefGoogle Scholar
  19. 19.
    Lemus I, Garcia R, Delvillar E, Knop G (1999) Hypoglycaemic activity of four plants used in Chilean popular medicine. Phytother Res 13:91–94CrossRefGoogle Scholar
  20. 20.
    Nabi SA, Kasetti RB, Sirasanagandla S, Tilak TK, Kumar MVJ, Rao CA (2013) Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Complement Altern Med 13:37CrossRefGoogle Scholar
  21. 21.
    Yao Y, Chen F, Wang M, Wang J, Ren G (2008) Antidiabetic activity of Mung bean extracts in diabetic KK-Ay mice. J Agri Food Chem 56:8869–8873CrossRefGoogle Scholar
  22. 22.
    Singh MP, Pathak K (2015) Animal models for biological screening of anti-diabetic drugs: an overview. Eur J Exp Biol 5:37–48Google Scholar
  23. 23.
    Wan LS, Chen CP, Xiao ZQ, Wang YL, Min QX, Yue Y, Chen J (2013) In vitro and in vivo anti-diabetic activity of Swertia kouitchensis extract. J Ethnopharmacol 147:622–630CrossRefGoogle Scholar
  24. 24.
    Gupta S, Kataria M, Gupta PK, Murganandan S, Yashroy RC (2004) Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats. J Ethnopharmacol 90:185–189CrossRefGoogle Scholar
  25. 25.
    Shepherd J (2005) Does statin monotherapy address the multiple lipid abnormalities in type 2 diabetes. Atheroscler Suppl 6:15–19CrossRefGoogle Scholar
  26. 26.
    Shirwaikar A, Rajendran K, Barik R (2006) Effect of aqueous bark extract of Garuga pinnata Roxb. in streptozotocin-nicotinamide induced type-II diabetes mellitus. J Ethnopharmacol 107:285–290CrossRefGoogle Scholar
  27. 27.
    Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42CrossRefGoogle Scholar
  28. 28.
    Evans WC (2009) Trease and Evans’ pharmacognosy. Elsevier Health Sciences, AmsterdamGoogle Scholar
  29. 29.
    Shetty K (2001) Biosynthesis and medical applications of rosmarinic acid. J Herbs Spices Med Plants 8:161–181CrossRefGoogle Scholar
  30. 30.
    Cotelle N (2001) Role of flavonoids in oxidative stress. Curr Top Med Chem 1:569–590CrossRefGoogle Scholar
  31. 31.
    García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58:537–552CrossRefGoogle Scholar
  32. 32.
    Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100CrossRefGoogle Scholar
  33. 33.
    McCue PP, Shetty K (2004) Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac J Clin Nutr 13:101–106Google Scholar
  34. 34.
    Puls W, Keup U, Krause H, Thomas PG, Hoffmeister F (1977) Glucosidase inhibition Naturwissenschaften 64:536–537CrossRefGoogle Scholar
  35. 35.
    Chatterjee MN, Shinde R (2002) Jaypee brothers. Medical Publishers, New DehliGoogle Scholar
  36. 36.
    Shah AA, Khan MS, Khan S, Ahmad N, Alhidary IA, Khan RU, Shao T (2016) Effect of different levels of alpha tocopherol on performance traits, serum antioxidant enzymes, and trace elements in Japanese quail (Coturnix coturnix japonica) under low ambient temperature. Revista Brasileira de Zootec 45:622–626CrossRefGoogle Scholar
  37. 37.
    Kusano R, Ogawa S, Matsuo Y, Tanaka T, Yazaki Y, Kouno I (2010) α-Amylase and lipase inhibitory activity and structural characterization of acacia bark proanthocyanidins. J Nat Prod 74:119–128CrossRefGoogle Scholar
  38. 38.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefGoogle Scholar
  39. 39.
    Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence. The Lancet 344:721–724CrossRefGoogle Scholar
  40. 40.
    Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352CrossRefGoogle Scholar
  41. 41.
    Chattopadhyay RR (1999) A comparative evaluation of some blood sugar lowering agents of plant origin. J Ethnopharmacol 67:367–372CrossRefGoogle Scholar

Copyright information

© The Korean Society for Applied Biological Chemistry 2017

Authors and Affiliations

  • Khalil Akhtar
    • 1
  • Syed Wadood Ali Shah
    • 2
  • Assar Ali Shah
    • 3
  • Muhammad Shoaib
    • 2
  • Syed Kashif Haleem
    • 4
  • Nighat Sultana
    • 1
  1. 1.Department of BiochemistryHazara University MansehraMansehraPakistan
  2. 2.Department of MicrobiologyHazara University MansehraMansehraPakistan
  3. 3.College of Animal Sciences and TechnologyNanjing Agricultural UniversityNanjingPeople’s Republic of China
  4. 4.Department of PharmacyUniversity of MalakandLower DirPakistan

Personalised recommendations