Production of recombinant miraculin protein using transgenic citrus cell suspension culture system

  • Seong Beom Jin
  • Hyeon Jin Sun
  • Md Adnan Al Bachchu
  • Sung Jin Chung
  • Jongwoo Lee
  • Song-I Han
  • Jeong Hun Yun
  • Kyung Whan Boo
  • Dongsun Lee
  • Key Zung Riu
  • Jae-Hoon Kim
Original Article
  • 178 Downloads

Abstract

Miraculin gene containing the N-terminal signal peptide was introduced into navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) callus cells by Agrobacterum-mediated transformation. Transgenic somatic embryos were screened on the shoot induction medium containing 25 mg hygromycin L−1. Citrus callus cells were reproduced from the green color somatic embryos on the callus reproduction medium. The obtained transgenic cells were cultured in Murashige and Tucker’s liquid medium containing 50 g sucrose L−1 in a shaking incubator. Similar to the native miraculin, the secreted recombinant miraculin protein formed a disulfide-linked dimer and retained taste-modifying activity. The stability of recombinant protein expression was confirmed over nine generations of callus. This production system can be an excellent alternative for producing various recombinant proteins as well as miraculin.

Keywords

Citrus callus Miraculin Recombinant protein Suspension cell culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachchu MAA, Jin SB, Park JW, Boo KH, Sun HJ, Lee HY et al. (2011a) Agrobacterium-mediated transformation using embryogenic calli in Satsuma mandarin (Citrus unshiu Marc.) cv. Miyagawa wase. Hort Environ Biotechnol 52, 170–175CrossRefGoogle Scholar
  2. Bachchu MAA, Jin SB, Park JW, Boo KH, Sun HJ, Lee HY et al. (2011b) Functional expression of miraculin, a taste-modifying protein, in transgenic Miyagawa Wase Satsuma Mandarin (Citrus unshiu Marc.). J Korean Soc Appl Biol Chem 54, 24–29CrossRefGoogle Scholar
  3. Carimi F, Maria CT, Febio DP, and Francesco G (1998) Somatic embryogenesis and plant regeneration from undeveloped ovules and sitgma/style explants of sweet orange navel group [Citrus sinensis (L.) Osb.]. Plant Cell, Tissue Organ Cult 54, 183–189CrossRefGoogle Scholar
  4. Dutt M and Grosser JW (2010) An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus. Plant Cell Rep 29, 1251–1260CrossRefGoogle Scholar
  5. Hirai T, Go F, Hideo K, Naoya F, and Hiroshi E (2010) Production of recombinant miraculin using transgenic tomatoes in a closed cultivation system. J Agric Food Chem 58, 6096–6101CrossRefGoogle Scholar
  6. Hiwasa-Tanase K, Hirai T, Kato K, Duhita N, and Ezura H (2012) From miracle fruit to transgenic tomato: mass production of the tastemodifying protein miraculin in transgenic plants. Plant Cell Rep 31, 513–525CrossRefGoogle Scholar
  7. Huang TK and McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30, 398–409CrossRefGoogle Scholar
  8. Ito K, Sugawara T, Koizumi A, Nakajima K, Shimizu-Ibuka A, Shiroishi M et al. (2010) Bulky high-mannose-type N-glycan blocks the tastemodifying activity of miraculin. Biochim Biophys Acta 1800, 986–992CrossRefGoogle Scholar
  9. Jin SB, Song KJ, and Riu KZ (2007) Serveral factors affecting embryogeneic culture maintenance and shoot regeneration in ‘Miyagawqa Wase’ satusuma mandarin (Citrus unshiu). Hort Environ Biotechol 48, 167–170Google Scholar
  10. Kim NS, Yu HW, Chung ND, Shin YJ, Kwon TH, and Yang MS (2011) Production of functional recombinant bovine trypsin in transgenic rice cell suspension cultures. Protein Expr Purif 76, 121–126CrossRefGoogle Scholar
  11. Matsuyama T, Satoh M, Nakata R, Aoyama T, and Inoue H (2009) Functional expression of miraculin, a taste-modifying protein in Escherichia coli. J Biochem 145, 445–450CrossRefGoogle Scholar
  12. Sugaya T, Yano M, Sun HJ, Hirai T, and Ezura H (2008) Transgenic strawberry expressing the taste-modifying protein miraculin. Plant Biotechnol 25, 329–333CrossRefGoogle Scholar
  13. Sun HJ, Cui ML, Ma B, and Ezura H (2006) Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett 580, 620–626CrossRefGoogle Scholar
  14. Sun HJ, Kataoka H, Yano M, and Ezura H (2007) Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotech J 5, 768–777CrossRefGoogle Scholar
  15. Theerasilp S and Kurihara Y (1988) Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J Biol Chem 263, 11536–11539Google Scholar

Copyright information

© The Korean Society for Applied Biological Chemistry 2013

Authors and Affiliations

  • Seong Beom Jin
    • 1
  • Hyeon Jin Sun
    • 2
  • Md Adnan Al Bachchu
    • 3
  • Sung Jin Chung
    • 2
  • Jongwoo Lee
    • 2
  • Song-I Han
    • 3
  • Jeong Hun Yun
    • 3
  • Kyung Whan Boo
    • 2
  • Dongsun Lee
    • 3
  • Key Zung Riu
    • 1
    • 2
    • 3
  • Jae-Hoon Kim
    • 1
    • 2
    • 3
  1. 1.Subtropica/Tropical Plant Gene BankJeju National UniversityJejuRepublic of Korea
  2. 2.Subtropical Horticulture Research InstituteJeju National UniversityJejuRepublic of Korea
  3. 3.Faculty of Biotechnology, College of Applied Life ScienceJeju National University, SARIJejuRepublic of Korea

Personalised recommendations