Advertisement

Heavy metals on sediments of a Mexican tropical lake: chemical speciation, metal uptake capacity, and chemical states

  • F. Lopez-Herrera y Cairo
  • H. D. Jimenez-Torres
  • I. D. Barcelo-Quintal
  • P. F. Zarate-Del Valle
  • G. G. Carbajal-Arizaga
  • W. de la Cruz-Hernandez
  • S. Gomez-SalazarEmail author
Original Paper

Abstract

Mobility and speciation of heavy metals in sediments of Mexican Lake Chapala were assessed through a five-step sequential extraction technique. Metal adsorption capacity of sediments was investigated from each sequential extraction through measurements of their specific surface areas using nitrogen adsorption data. X-ray photoelectron spectroscopy (XPS) was applied to every geochemical fraction to study the chemical metal species present on the surface of sediments. A low risk of detachment to water column was found for all metals, except Zn, Mn, and Fe, although these metals are not considered of high risk to biota. Despite this, the results of this study indicated that there has not been an adequate control from corresponding authorities regarding discharges containing heavy metals. The results of nitrogen adsorption measurements allowed deducing that sediments are mesoporous solids formed mainly by parallel lamellae (clays) composed of aluminosilicates. A clear relationship was observed between specific surface area and the amount of metals obtained by atomic absorption measurements. XPS results indicated that the main chemical states of metals observed were: silicon dioxide (SiO2), aluminum trioxide (Al2O3), iron/silicon oxide (Fe/SiO2), iron (III) oxyhydroxide [Fe(OH)O], aluminosilicate oxide [Al2SiO5], sodium acetate [NaC2H3O2], iron/aluminum oxide [Fe/Al2O3], aluminum hydroxide [Al(OH)3], and iron oxide [Fe2O3].

Keywords

Sediment Metal Fractionation XPS Specific surface area 

Notes

Acknowledgements

We are thankful to Mexico’s National Council of Science and Technology (CONACyT) and the Ministry of Public Education-PRODEP for their support through Grants No. 84252 and 103.5/13/9346, respectively, and for the scholarship of Francisco Lopez-Herrera y Cairo from CONACyT.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allen GC, Curtis MT, Hooper AJ, Tucker PM (1974) X-ray photoelectron spectroscopy of iron–oxygen systems. J Chem Soc Dalton Trans 14:1525CrossRefGoogle Scholar
  2. Badillo-Camacho J, Murillo-Delgado JO, Barcelo-Quintal ID, Zarate del Valle PF, Orozco-Guareno E, Lopez-Chuken UJ, Gomez-Salazar S (2016) Heavy metals speciation in sediments of a Mexican tropical lake. Rev Mex Ing Quím 15(2):565–573Google Scholar
  3. Bonnelle JP, Grimblot J, D’huysser A (1975) Influence de la polarisation des liaisons sur les spectres esca des oxydes de cobalt. J Electron Spectrosc Relat Phenom 7:151CrossRefGoogle Scholar
  4. Brion D (1980) Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau. Appl Surf Sci 5:133CrossRefGoogle Scholar
  5. Bussy AL (1996) Mobilité des metaux das un systeme fluvial urbain. Doctorial thesis. University of Paris XII Val de Marne, Paris, France, 200Google Scholar
  6. Carley AF, Robers MW (1978) An x-ray photoelectron spectroscopic study of the interaction of oxygen and nitric oxide with aluminium. Proc R Soc Ser A 363:403CrossRefGoogle Scholar
  7. Carney TJ, Tsakiropoulos P, Watts JF, Castle JE (1990) Oxidation and surface segregation in rapidly solidified aluminum alloy powders. Int J Rapid Solidif 5:189Google Scholar
  8. Chuang TJ, Domen KJ (1989) Ultraviolet laser excited adsorbate-surface interactions: NH3, C2H4 and CH2I2 on Al and oxidized Al surfaces. Vac Sci Technol B 7:1200CrossRefGoogle Scholar
  9. Ciliberto E, Fragala I, Rizza R, Spoto G, Allen GC (1995) Synthesis of aluminum oxide thin films: use of aluminum tris-dipivaloylmethanate as a new low pressure metal organic chemical vapor deposition precursor. Appl Phys Lett 67:1624CrossRefGoogle Scholar
  10. Contour JP, Massies J, d’Avitaya FA (1987) An x-ray photoelectron spectroscopy and low-energy electron diffraction controlled surface preparation of Si(100) prior to epitaxial growth of GaAs. J Vac Sci Technol B 5:908CrossRefGoogle Scholar
  11. Cros A, Saoudi R, Hewett CA, Lau SS, Hollinger G (1990) An x-ray photoemission spectroscopy investigation of oxides grown on Au x Si1−x layers. J Appl Phys 67:1826CrossRefGoogle Scholar
  12. Deepa K, Prasad C, Jyothi NVV, Naushad M, Rajendran S, Karlapudi S, Himagirish Kumar S (2018) Adsorptive removal of Pb(II) metal from aqueous medium using biogenically synthesized and magnetically recoverable core-shell structured AM@Cu/Fe3O4 nano composite. Desalin Water Treat 111:278–285CrossRefGoogle Scholar
  13. Dollar NL, Souch CJ, Filippelli GM, Mastalerz M (2001) Chemical fractionation of metals in wetland sediments: Indiana Dunes National Lakeshore. Environ Sci Technol 35:3608–3615CrossRefGoogle Scholar
  14. Ealet B, Elyakhloufi MH, Gillet E, Ricci M (1994) Electronic and crystallographic structure of γ-alumina thin films. Thin Solid Films 250:92CrossRefGoogle Scholar
  15. Fytianos K, Lourantou A (2004) Speciation of elements in sediment samples collected at lakes Volvi and Koronia. N. Greece. Environ Int 30:11–17CrossRefGoogle Scholar
  16. Gillet E, Ealet B (1992) Characterization of sapphire surfaces by electron energy-loss spectroscopy. Surf Sci 273:427CrossRefGoogle Scholar
  17. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, New YorkGoogle Scholar
  18. Hammond JS, Holubka JW, Devries JE, Duckie RA (1981) The application of x-ray photo-electron spectroscopy to a study of interfacial composition in corrosion-induced paint de-adhesion. Corros Sci 21:239CrossRefGoogle Scholar
  19. Hansen AM, van Afferden M (2001) Toxic substances. In: Hansen AM, van Afferden M (eds) The Lerma-Chapala watershed: evaluation and management, chap 4. KluwerAcademic/PlenumPublishers, New YorkCrossRefGoogle Scholar
  20. Hess A, Kemnitz E, Lippitz A, Unger WES, Menz D-H (1994) ESCA, XRD, and IR characterization of aluminum oxide, hydroxyfluoride, and fluoride surfaces in correlation with their catalytic activity in heterogeneous halogen exchange reactions. J Catal 148:270CrossRefGoogle Scholar
  21. Horowitz AJ, Elrick KA (1987) The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl Geochem 2:437–451CrossRefGoogle Scholar
  22. Hughes AE, Hedges MM, Sexton BA (1990) Reactions at the Al/SiO2/SiC layered interface. J Mater Sci 25:4856CrossRefGoogle Scholar
  23. Jain CK (2004) Metal fractionation study on bed sediments of River Yamuna, India. Water Res 38:569–578CrossRefGoogle Scholar
  24. Ji Z, Zhang Y, Zhang H, Huang C, Pei Y (2019) Fraction spatial distributions and ecological risk assessment of heavy metals in the sediments of Baiyangdian Lake. Ecotoxicol Environ Safe 174(15):417–428CrossRefGoogle Scholar
  25. Leinen D, Lassaletta G, Fernandez A, Caballero A, Gonzalez-Elipe AR, Martín JM, Vacher B (1996) Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. II. Preparation and characterization of Al x Ti y O z thin films. J Vac Sci Technol A 14:2842CrossRefGoogle Scholar
  26. Mathieu HJ, Landolt D (1986) An investigation of thin oxide films thermally grown in situ on Fe·24Cr and Fe·24Cr·11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy. Corros Sci 26:547CrossRefGoogle Scholar
  27. McGuire GE, Schweitzer GK, Carlson TA (1973) Core electron binding energies in some Group IIIA, VB, and VIB compounds. Inorg Chem 12:2451CrossRefGoogle Scholar
  28. Mills P, Sullivan JL (1983) A study of the core level electrons in iron and its three oxides by means of x-ray photoelectron spectroscopy. J Phys D 16:723CrossRefGoogle Scholar
  29. M.O.E., Ministry Ontario Environmental, Webber MD (1988) Controle de la concentration de metáux lourds dans les sols apres epandage de bouts d´egout municipals:l´aproche Canadienne. Sci Tecniques de L´eau 21:45–51Google Scholar
  30. Nefedov VI, Salyn YV, Leonhardt G, Scheibe R (1977) A comparison of different spectrometers and charge corrections used in x-ray photoelectron spectroscopy. J Electron Spectrosc Relat Phenom 10:121CrossRefGoogle Scholar
  31. Nguyen TP, Lefrant S (1989) XPS study of SiO thin films and SiO-metal interfaces. J Phys Condens Matter 1:5197CrossRefGoogle Scholar
  32. Nikolaos X, Mapelli V (2014) Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int J Hydrog Energy 39:21864–21875CrossRefGoogle Scholar
  33. NOM-001-ECOL-1996 (1996) Diario Oficial de la Federación. Norma Oficial Mexicana. NOM--SEMARNAT/1996 Fija los límites máximos de contaminantes en descargas de aguas de desecho a cuerpos de aguas nacionales. MexicoGoogle Scholar
  34. Oku M, Hirokawa K, Ikeda S (1975) X-ray photoelectron spectroscopy of manganese—oxygen systems. J Electron Spectrosc Relat Phenom 7:465CrossRefGoogle Scholar
  35. Olefjord I, Mathieu HJ, Marcus P (1990) Intercomparison of surface analysis of thin aluminium oxide films. Surf Interface Anal 15:681CrossRefGoogle Scholar
  36. Pandiyarajan T, Saravanan R, Karthikeyan B, Gracia F, Mansilla HD, Gracia-Pinilla MA, Mangalaraja RV (2017) Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties. J Mater Sci Meter Electron 28:2448–2457CrossRefGoogle Scholar
  37. Paparazzo E (1987) X-ray photo-emission and Auger spectra of damage induced by Ar+ -ion etching at SiO2 surfaces. J Phys D 20:1091CrossRefGoogle Scholar
  38. Pashutski A, Folman M (1989) Low temperature XPS studies of NO and N2O adsorption on Al(100). Surf Sci 216:395CrossRefGoogle Scholar
  39. Perin G, Craboledda L, Lúchese M, Cirillo R, Dotta L, Zanette ML, Orio AA (1985) Heavy metal speciation in the sediments of Northern Adriatic Sea- a new approach for environmental toxicity determination. In: Lekkas TD (ed) Heavy metal in the environment, vol 2. Springer, Basel, pp 454–456Google Scholar
  40. Qin J, Yang C, Cao M, Zhang X, Rajendran S, Limpanart S, Ma M, Liu R (2017) Two-dimensional porous sheet-like carbon-doped ZnO/g-C3N4 nanocomposite with high visible-light photocatalytic performance. Mater Lett 189:156–159CrossRefGoogle Scholar
  41. Qin J, Zhang M, Rajendran S, Zhang X, Liu R (2018) Facile synthesis of graphene-AgVO3 nanocomposite with excellent supercapacitor performance. Mater Chem Phys 212:30–34CrossRefGoogle Scholar
  42. Rajopadhye NR, Dake SB, Bhoraskar SV (1986) Characterization of Al2O3 films deposited by various methods. Thin Solid Films 142:127CrossRefGoogle Scholar
  43. Saravanan R, Agarwal S, Gupta VK, Khan MM, Gracia F, Mosquera E, Narayanan V, Stephen A (2018) Line defect Ce3 + induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity. J Photochem Photobiol A 353:499–506CrossRefGoogle Scholar
  44. Scott CA, Silva-Ochoa P, Florencio-Cruz V, Wester P (2001) Competition for water in the Lerma-Chapala Basin. In: The Hansen AM, van Afferden M (eds) Lerma-Chapala watershed: evaluation and management, chap 13. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  45. Seletchi ED, Negrila C, Duliu OG, Turca CV (2006) XPS, AES and ESR studies of Herastrau Lake sediments, Bucharest. In: Romania sixth international conference of the balkan physical union, Istanbul, Turkey, August 22–26Google Scholar
  46. Seyama H, Soma M (2003) Surface-analytical studies on environmental and geochemical surface processes. Anal Sci 19:487–497CrossRefGoogle Scholar
  47. Siriwardene RV, Cook JM (1985) Interaction of SO2 with sodium deposited on silica. J Colloid Interface Sci 108:414CrossRefGoogle Scholar
  48. Smith KL, Black KM (1984) Characterization of the treated surfaces of silicon alloyed pyrolytic carbon and SiC. J Vac Sci Technol A 2:744CrossRefGoogle Scholar
  49. Soma M, Tanaka A, Seyama H, Satake K (1994) Characterization of arsenic in lake sediments by X-ray photoelectron spectroscopy. Geochim Cosmochim Acta 58(12):2743–2745CrossRefGoogle Scholar
  50. Tan BJ, Klabunde KJ, Sherwood PMA (1991) XPS studies of solvated metal atom dispersed catalysts—evidence for cobalt-manganese particles on alumina and silica. J Am Chem Soc 113:855CrossRefGoogle Scholar
  51. Tanaka K, Matsuzaki S, Toyoshima I (1993) Photodecomposition of adsorbed methoxy species by UV light and formaldehyde adsorption on Si (111). Studied by XPS and UPS. J Phys Chem 97:5673CrossRefGoogle Scholar
  52. Tanizawa Y, Suzuki T (1995) Effects of silicate ions on the formation and transformation of calcium phosphates in neutral aqueous solutions. J Chem Soc Dalton Trans 91:3499CrossRefGoogle Scholar
  53. Taylor JA (1982) An XPS study of the oxidation of AlAs thin films grown by MBE. J Vac Sci Technol 20:751CrossRefGoogle Scholar
  54. Taylor JA, Lancaster GM, Ignatiev A, Rabalais JW (1978) Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides. J Phys Chem 68:1776CrossRefGoogle Scholar
  55. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851CrossRefGoogle Scholar
  56. Turner NH, Single AM (1990) Determination of peak positions and areas from wide-scan XPS spectra. Surf Interface Anal 15:215CrossRefGoogle Scholar
  57. Urban NR, Ernst K, Bernasconi S (1999) Addition of sulfur to organic matter during early diagenesis of lake sediments. Geochim Cosmochim Acta 63(6):837–853CrossRefGoogle Scholar
  58. USEPA (2000) Further revisions to the clean water act for discharge of dredged. Material 65(159):65–67Google Scholar
  59. USEPA Method 3052 Microwave assisted acid digestion of siliceous and organically based matrices (1996). http://www.epa.gov/waste/hazard/testmethods/sw846/pdfs/3052.pdf. Accessed Nov 2018
  60. Wagner CD, Zatko DA, Raymond RH (1980) Use of the oxygen KLL auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal Chem 52:1445CrossRefGoogle Scholar
  61. Warren LA, Zimmerman AP (1994) The importance of surface area in metal sorption by oxides and organic matter in heterogeneous natural sediment. Appl Geochem 9:245–254CrossRefGoogle Scholar
  62. Whalley C, Grant A (1994) Assessment of the phase selectivity of the European Community Bureau of Reference (BCR) sequential extraction procedure for metals in sediment. Anal Chim Acta 291:287–295CrossRefGoogle Scholar
  63. Yu X, Hantsche H (1993) Vertical differential charging in monochromatized small spot X-ray photoelectron spectroscopy. Surf Interface Anal 20:555CrossRefGoogle Scholar
  64. Zhang Y, Han Y, Yang J, Zhu L, Zhong W (2017) Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J Environ Sci 62:31–38CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  • F. Lopez-Herrera y Cairo
    • 1
  • H. D. Jimenez-Torres
    • 1
  • I. D. Barcelo-Quintal
    • 2
  • P. F. Zarate-Del Valle
    • 1
  • G. G. Carbajal-Arizaga
    • 1
  • W. de la Cruz-Hernandez
    • 3
  • S. Gomez-Salazar
    • 4
    Email author
  1. 1.Departamento de QuímicaUniversidad de Guadalajara-CUCEIGuadalajaraMexico
  2. 2.Departamento de Ciencias BasicasUniversidad Autonoma Metropolitana-AzcapotzalcoAzcapotzalcoMexico
  3. 3.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  4. 4.Departamento de Ingeniería QuímicaUniversidad de Guadalajara-CUCEIGuadalajaraMexico

Personalised recommendations