Advertisement

Glyphosate in vitro removal and tolerance by Aspergillus oryzae in soil microcosms

  • C. S. Carranza
  • J. P. Regñicoli
  • M. E. Aluffi
  • N. Benito
  • S. M. Chiacchiera
  • C. L. Barberis
  • C. E. MagnoliEmail author
Original Paper
  • 67 Downloads

Abstract

Argentinian agriculture is based on a technological package that includes the application of significant amounts of pesticides. Glyphosate is the active ingredient of several glyphosate herbicides which are frequently used for weed control. Fungi can use glyphosate both as a nutrient and an energetic source. Therefore, the aim of the present study was to evaluate the in vitro glyphosate removal as the only source of phosphorus or nitrogen by two non-toxigenic Aspergillus oryzae strains. A. oryzae AM1 and AM2 were successfully able to use the herbicide both as phosphorus or nitrogen source. The degradation percentages were higher than 50% at the end of the incubation period (15 days) with glyphosate concentrations of 1 and 1.5 mM. In addition, AM1 strain was able to remove 57% of 10 mM of glyphosate at 0.99 of aW. Soil microcosm assay was performed in order to study the GP tolerance, permanence and competitiveness of A. oryzae AM1 in the presence of native mycota. A. oryzae count remained constant along the incubation period and was not significantly affected by the different glyphosate concentrations tested (10, 20 and 50 mM). This strain showed great in vitro removal ability, and it was also able to remain viable on soil microcosms contaminated with glyphosate. Therefore, these results encourage future studies in order to evaluate the ability of these strains to degrade glyphosate on soil and then promote them as potential bioremediation agents.

Keywords

Herbicides Fungi Biodegradation Soil microcosms 

Notes

Acknowledgements

This study was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT-PICT 0943/14) and Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto (SECYT-UNRC 18C/391).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Alaniz Zanon MS, Chiotta ML, Giaj-Merlera G, Barros G, Chulze S (2013) Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts. Int J Food Microbiol 162:220–225.  https://doi.org/10.1016/j.ijfoodmicro.2013.01.017 CrossRefGoogle Scholar
  2. Ali I (2013) Water treatment by adsorption columns: evaluation at ground level. Sep Purif Rev 43:175–205.  https://doi.org/10.1080/15422119.2012.748671 CrossRefGoogle Scholar
  3. Ali I, Aboul-Enein HY (2006) Instrumental methods in metal Ion speciation: chromatography, capillary electrophoresis and electrochemistry, 1st edn. Taylor and Francis Ltd, New YorkCrossRefGoogle Scholar
  4. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667.  https://doi.org/10.1038/nprot.2006.370 CrossRefGoogle Scholar
  5. Ali I, Aboul-Enein HY, Gupta VK (2009) Nanochromatography and nanocapillary electrophoresis: pharmaceutical and environmental analyses. Wiley, HobokenCrossRefGoogle Scholar
  6. Ali I, Al-Othman ZA, Alwarthan A, Asim M, Khan TA (2014) Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ Sci Pollut Res 21:3218–3229.  https://doi.org/10.1007/s11356-013-2235-3 CrossRefGoogle Scholar
  7. Ali I, Alothman ZA, Sanagi MM (2015) Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J Mol Liq 211:457–465.  https://doi.org/10.1016/j.molliq.2015.07.034 CrossRefGoogle Scholar
  8. Ali I, Al-Othman ZA, Alwarthan A (2016a) Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J Mol Liq 221:1168–1174.  https://doi.org/10.1016/j.molliq.2016.06.089 CrossRefGoogle Scholar
  9. Ali I, Al Othman ZA, Al-Warthan A (2016b) Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int J Environ Sci Technol 13:733–742.  https://doi.org/10.1007/s13762-015-0919-6 CrossRefGoogle Scholar
  10. Arfarita N, Imai T, Kanno A, Yarimizu T, Xiaofeng S, Jie W, Higuchi T, Akada R (2013) The potential use of Trichoderma viride strain frp3 in biodegradation of the herbicide glyphosato. Biotechnol Biotechnol Equip 27:3518–3521CrossRefGoogle Scholar
  11. Arfarita N, Djuhari Prasetya B, Imai T (2016) The application of Trichoderma viride strain frp 3 for biodegradation of glyphosate herbicide in contaminated land. Agrivita J Agric Sci 38:275–281.  https://doi.org/10.17503/agrivita.v38i3.550 CrossRefGoogle Scholar
  12. Barja BC, dos Santos Afonso M (2005) Aminomethylphosphonic acid and glyphosate adsorption onto goethite: a comparative study. Environ Sci Technol 39:585–592.  https://doi.org/10.1021/es035055q CrossRefGoogle Scholar
  13. Basheer AA (2018) Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30:402–406.  https://doi.org/10.1002/chir.22808 CrossRefGoogle Scholar
  14. Benbrook CM (2012) Impacts of genetically engineered crops on pesticide use in the U.S.—the first sixteen years. Environ Sci Eur 24:24.  https://doi.org/10.1186/2190-4715-24-24 CrossRefGoogle Scholar
  15. Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:1–15.  https://doi.org/10.1186/s12302-016-0070-0 CrossRefGoogle Scholar
  16. Bujacz B, Wieczorek P, Krzysko-Lupicka T, Golab Z, Lejczak B, Kavfarski P (1995) Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl Eenviron Microbiol 61:2905–2910Google Scholar
  17. Carranza CS, Bergesio MV, Barberis CL, Chiacchiera SM, Magnoli CE (2014) Survey of Aspergillus section Flavi presence in agricultural soils and effect of glyphosate on nontoxigenic A. flavus growth on soil-based medium. J Appl Microbiol 116:1229–1240.  https://doi.org/10.1111/jam.12437 CrossRefGoogle Scholar
  18. Carranza CS, Barberis CL, Chiacchiera SM, Dalcero AM, Magnoli CE (2016) Isolation of culturable mycobiota from agricultural soils and determination of tolerance to glyphosate of nontoxigenic Aspergillus section Flavi strains. J Environ Sci Heal B Pesticides Food Contam Agric Wastes 51:35–43.  https://doi.org/10.1080/03601234.2015.1080491 CrossRefGoogle Scholar
  19. Castro JV, Peralba MCR, Ayub MAZ (2007) Biodegradation of the herbicide glyphosate by filamentous fungi in platform shaker and batch bioreactor. J Environ Sci Health B 42:883–886.  https://doi.org/10.1080/03601230701623290 CrossRefGoogle Scholar
  20. Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS ONE 7:1–12.  https://doi.org/10.1371/journal.pone.0047205 CrossRefGoogle Scholar
  21. Dallyn H, Fox A (1980) Microbial growth and survival in extreme environments: spoilage of material of reduced water activity by xerophilic fungi. Academic Press, CambridgeGoogle Scholar
  22. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419.  https://doi.org/10.3390/ijerph8051402 CrossRefGoogle Scholar
  23. Di Renzo A, Casanoves F, Balzarini G, Gonzalez L, Tablada M, Robledo C (2017) Infostat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
  24. Eman A, Abdel-megeed A, Suliman AA, Sadik MW, Sholkamy EN (2013) Biodegradation of Glyphosate by fungal strains isolated from herbicides polluted-soils in Riyadh area. Int J Curr Microbiol Appl Sci 2:359–381Google Scholar
  25. Ermakova IT, Kiseleva NI, Shushkova T, Zharikov M, Zharikov GA, Leontievsky AA (2010) Bioremediation of glyphosate-contaminated soils. Appl Microbiol Biotechnol 88:585–594.  https://doi.org/10.1007/s00253-010-2775-0 CrossRefGoogle Scholar
  26. Fan J, Yang G, Zhao H, Shi G, Geng Y, Hou T, Tao K (2012) Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol 58:263–271.  https://doi.org/10.2323/jgam.58.263 CrossRefGoogle Scholar
  27. Food and Agricultural Organization (FAO)-World Health Organization (WHO) (2016) Joint FAO/WHO metting on pesticide residues. http://www.who.int/foodsafety/areas_work/chemical-risks/jmpr/en/. Accessed 29 Oct 2018
  28. Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. American chemical society monograph. American Chemical Society, Washington, DCGoogle Scholar
  29. Fu GM, Li RY, Li KM, Hu M, Yuan XQ, Li B, Wang FX, Liu CM, Wan Y (2016) Optimization of liquid-state fermentation conditions for the glyphosate-degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis. Prep Biochem Biotechnol 46:780–787.  https://doi.org/10.1080/10826068.2015.1135462 CrossRefGoogle Scholar
  30. Fu GM, Chen Y, Li RY, Yuan XQ, Liu CM, Li B, Wan Y (2017) Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Prep Biochem Biotechnol.  https://doi.org/10.1080/10826068.2017.1342260 CrossRefGoogle Scholar
  31. Garry VF, Harkins ME, Erickson LL, Long-Simpson LK, Holland SE, Burroughs BL (2002) Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environ Health Perspect 110(Suppl 3):441–449.  https://doi.org/10.1289/ehp.02110s3441 CrossRefGoogle Scholar
  32. Gupta VK, Ali I (2012) Environmental water: advances in treatment, remediation and recycling, 1st edn. Elsevier, AmsterdamGoogle Scholar
  33. Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Scoccianti C, Mattock H, Straif K (2015) Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol 16:490–491.  https://doi.org/10.1016/S1470-2045(15)70134-8 CrossRefGoogle Scholar
  34. Hadi F, Mousavi A, Noghabi KA, Tabar HG, Salmanian AH (2013) New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J Environ Sci Health B 48:208–213.  https://doi.org/10.1080/03601234.2013.730319 CrossRefGoogle Scholar
  35. Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem Eng 43:459–462.  https://doi.org/10.1016/j.jtice.2011.11.002 CrossRefGoogle Scholar
  36. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192.  https://doi.org/10.1038/nrmicro2519 CrossRefGoogle Scholar
  37. Hokanson R, Fudge R, Chowdhary R, Busbee D (2007) Alteration of estrogen-regulated gene expression in human cells induced by the agricultural and horticultural herbicide glyphosate. Hum Exp Toxicol 26:747–752.  https://doi.org/10.1177/0960327107083453 CrossRefGoogle Scholar
  38. Huber D (2012) Glyphosate hazards to crops, soils, animals, and consumers. http://www.i-sis.org.uk/USDA_scientist_reveals_all.php. Accessed 30 April 2018
  39. Ibáñez M, Pozo OJ, Sancho JV, López FJ, Hernández F (2005) Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A 1081:145–155.  https://doi.org/10.1016/j.chroma.2005.05.041 CrossRefGoogle Scholar
  40. International Agency for Research on Cancer (IARC) (2015) Some organophosphate insecticides and herbicides. IARC, LyonGoogle Scholar
  41. Jiang X, Ouyang Z, Zhang Z, Yang C, Li X, Dang Z, Wu P (2018) Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions. Colloids Surf A Physicochem Eng Asp 547:64–72.  https://doi.org/10.1016/j.colsurfa.2018.03.041 CrossRefGoogle Scholar
  42. Klimek M, Lejczak B, Kafarski P, Forlani G (2001) Metabolism of the phosphonate herbicide glyphosate by a non-nitrate-utilizing strain of Penicillium chrysogenum. Pest Manag Sci 57:815–821.  https://doi.org/10.1002/ps.366 CrossRefGoogle Scholar
  43. Komoba D, Gennity I, Heinrich-Sandermann JR (1992) Plant metabolism of herbicides with C-P bonds: glyphosate. Pestic Biochem Physiol 43:85–94CrossRefGoogle Scholar
  44. Krzysko-Lupicka T, Orlik A (1997) Use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere 34:2601–2605CrossRefGoogle Scholar
  45. Krzysko-Lupicka T, Strof W, Kubs K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48:549–552CrossRefGoogle Scholar
  46. Li Y, Zhao C, Wen Y, Wang Y, Yang Y (2018) Adsorption performance and mechanism of magnetic reduced graphene oxide in glyphosate contaminated water. Environ Sci Pollut Res 25:21036–21048.  https://doi.org/10.1007/s11356-018-2282-x CrossRefGoogle Scholar
  47. Liang A, Sha J, Lu W, Chen M, Li L, Jin D, Yan Y, Wang J, Ping S, Zhang W, Wang Y, Lin M (2008) A single residue mutation of 5-enoylpyruvylshikimate-3-phosphate synthase in Pseudomonas stutzeri enhances resistance to the herbicide glyphosate. Biotechnol Lett 30:1397–1401.  https://doi.org/10.1007/s10529-008-9703-8 CrossRefGoogle Scholar
  48. Lueken A, Juhl-Strauss U, Krieger G, Witte I (2004) Synergistic DNA damage by oxidative stress (induced by H2O2) and nongenotoxic environmental chemicals in human fibroblasts. Toxicol Lett 147:35–43CrossRefGoogle Scholar
  49. Mladinic M, Berend S, Vrdoljak AL, Kopjar N, Radic B, Zeljezic D (2009) Evaluation of genome damage and its relation to oxidative stress induced by glyphosate in human lymphocytes in vitro. Environ Mol Mutagen 50:800–807.  https://doi.org/10.1002/em.20495 CrossRefGoogle Scholar
  50. Mohamed AT, El Hussein AA, El Siddig MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology 10:274–279.  https://doi.org/10.3923/biotech.2011.274.279 CrossRefGoogle Scholar
  51. Nicolas V, Oestreicher N, Vélot C (2016) Multiple effects of a commercial Roundup® formulation on the soil filamentous fungus Aspergillus nidulans at low doses: evidence of an unexpected impact on energetic metabolism. Environ Sci Pollut Res 23:14393–14404.  https://doi.org/10.1007/s11356-016-6596-2 CrossRefGoogle Scholar
  52. Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, DordrechtCrossRefGoogle Scholar
  53. Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143.  https://doi.org/10.1021/jf049605v CrossRefGoogle Scholar
  54. Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE (2005) Differential effects of glyphosate and Roundup on human placental cells and aromatase. Environ Health Perspect 113:716–720.  https://doi.org/10.1289/ehp.7728 CrossRefGoogle Scholar
  55. Rivera-Martínez L, Goyal MR, Crespo-Ruiz M (2009) Manejo de riego por goteo: Capítulo II: Métodos para medir la humedad en el suelo. Apple Academic Press Inc, OakvilleGoogle Scholar
  56. Sebiomo A, Ogundero VW, Bankole SA (2011) Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr J Biotechnol 10:770–778.  https://doi.org/10.5897/AJB10.989 CrossRefGoogle Scholar
  57. Sene L, Converti A, Secchi GAR, García-Simão RC (2010) New aspects on atrazine biodegradation. Brazilian Arch Biol Technol 53:487–496.  https://doi.org/10.1590/S1516-89132010000200030 CrossRefGoogle Scholar
  58. Serrano-Silva I, dos Santos EC, Ragagnin de Menezes C, Fonseca de Faria A, Franciscon E, Grossman M, Durrant LR (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675.  https://doi.org/10.1016/j.biortech.2009.03.079 CrossRefGoogle Scholar
  59. Shah PC, Kumar VR, Dastager SG, Khire JM (2017) Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides. AMB Express 7:66.  https://doi.org/10.1186/s13568-017-0370-9 CrossRefGoogle Scholar
  60. Sørensen SR, Schultz A, Jacobsen OS, Aamand J (2006) Sorption, desorption and mineralisation of the herbicides glyphosate and MCPA in samples from two Danish soil and subsurface profiles. Environ Pollut 141:184–194.  https://doi.org/10.1016/j.envpol.2005.07.023 CrossRefGoogle Scholar
  61. Sviridov AV, Shushkova TV, Zelenkova NF, Vinokurova NG, Morgunov IG, Ermakova IT, Leontievsky AA (2012) Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl Microbiol Biotechnol 93:787–796.  https://doi.org/10.1007/s00253-011-3485-y CrossRefGoogle Scholar
  62. Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Epiktetov DO, Leontievsky AA (2015) Microbial degradation of glyphosate herbicides (review). Appl Biochem Microbiol 51:188–195.  https://doi.org/10.1134/S0003683815020209 CrossRefGoogle Scholar
  63. Tarazona JV, Court-Marques D, Tiramani M, Reich H, Pfeil R, Istace F, Crivellente F (2017a) Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Arch Toxicol 91:2723–2743.  https://doi.org/10.1007/s00204-017-1962-5 CrossRefGoogle Scholar
  64. Tarazona JV, Court-Marques D, Tiramani M, Reich H, Pfeil R, Istace F, Crivellente F (2017b) Response to the reply by C. J. Portier and P. Clausing, concerning our review “Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC”. Arch Toxicol 91:3199–3203.  https://doi.org/10.1007/s00204-017-2032-8 CrossRefGoogle Scholar
  65. US EPA (2017) EPA releases draft risk assessments for glyphosate. https://www.epa.gov/pesticides/epa-releases-draft-risk-assessments-glyphosate. Accessed 29 Oct 2018
  66. Villamil-Lepori EC, Bovi-Mitre G, Nassetta M (2013) Situación actual de la contaminación por plaguicidas en Argentina. Rev Int Contam Ambient 29:25–43Google Scholar
  67. Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165.  https://doi.org/10.1006/rtph.1999.1371 CrossRefGoogle Scholar
  68. Wrzosek J, Gworek B (2018) Glyphosate removal from aqueous solution by an adsorption process on natural zeolite-bearing rock. Desalin Water Treat 117:239–248.  https://doi.org/10.5004/dwt.2018.22464 CrossRefGoogle Scholar
  69. XueHua W, GuiMing F, Yin W, DeBin G, YongHui C, YangFan L, XiaoFang W (2010) Isolation and identification of glyphosate-degraded strain Aspergillus oryzae sp. A-F02 and its degradation characteristics. Plant Dis Pests 1:54–57Google Scholar
  70. Yu C, Song Y, Lin R, Jiang H, Wang X (2011) Biodegradation of pendimethalin by two fungus strains isolated from soil in China. In: 5th international conference on bioinformatics and biomedical engineering, iCBBE, pp 1–5.  https://doi.org/10.1109/icbbe.2011.5781540
  71. Zabaloy MC, Gomez E, Garland JL, Gomez MA (2012) Assessment of microbial community function and structure in soil microcosms exposed to glyphosate. Appl Soil Ecol 61:333–339.  https://doi.org/10.1016/j.apsoil.2011.12.004 CrossRefGoogle Scholar
  72. Zain NMM, Mohamad RB, Sijam K, Morshed MM, Awang Y (2013) Effect of selected herbicides in vitro and in soil on growth and development of soil fungi from oil palm plantation. Int J Agric Biol 15:820–826.  https://doi.org/10.5897/AJMR12.1277 CrossRefGoogle Scholar
  73. Zavareh S, Farrokhzad Z, Darvishi F (2018) Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water. Ecotoxicol Environ Saf 155:1–8.  https://doi.org/10.1016/j.ecoenv.2018.02.043 CrossRefGoogle Scholar
  74. Zhan H, Feng Y, Fan X, Chen S (2018) Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol 102(12):5033–5043CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  • C. S. Carranza
    • 1
  • J. P. Regñicoli
    • 1
  • M. E. Aluffi
    • 1
  • N. Benito
    • 1
  • S. M. Chiacchiera
    • 2
  • C. L. Barberis
    • 1
  • C. E. Magnoli
    • 1
    Email author
  1. 1.Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Departamento de Química, Facultad de Ciencias Exactas, Físico, Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations