Differential cell viability in Nitzschia palea on exposure to different organic and inorganic environmental effluents

  • A. Ahirwar
  • S. Gupta
  • M. Kashyap
  • P. Shukla
  • V. VinayakEmail author
Original Paper


This research is focused to report the effects of various effluents on the cell viability and density of diatoms. Experiments have been performed on fresh water diatom Nitzschia palea with seven effluents, to check the cell viability and density using spectroscopic and microscopic techniques. On exposing the diatom cells to crude sewage water (40% and 60% dilution), there is approximately 10 times elevation in cell density without loss in the viability of cells, up to 25 days. On the other hand, individual exposure to β propranolol drugs resulted in a total loss of cell viability and cell destruction with only 10% of growth rate. Further, using sodium metasilicate as effluent, the diatom population dropped about 30%–60% on increasing concentration. Besides physiological stress, these effluents have also direct influence on the lipid production in diatoms. The objective of this research is to provide the monitoring report of different environmental effluents on water quality as well as their influence on lipid biosynthesis and also their impact over the diatom’s health which acts as a biological sensor for water ecosystem.


Diatom Cell count Viability Lipid Environmental effluents 



VV is thankful to DST Nanomission for sanctioning research project number GOI (SR/NM/NT/1090-2014) and INUP IIT Bombay project no Pid: P989423752/2016 to her and PS is thankful to UGC BSR project. MK is thankful to UGC for fellowship and SG to DST SERB for NPDF fellowships respectively. Authors thank state-of-the-art facility to use SEM at Dr Hari Singh Gour Central University, Sagar and FESEM and TEM facilities at INUP, IIT Bombay.

Supplementary material

13762_2019_2309_MOESM1_ESM.doc (1 mb)
Supplementary material 1 (DOC 1060 kb)


  1. Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94CrossRefGoogle Scholar
  2. Azizullah A, Richter P, Häder D-P (2011) Toxicity assessment of a common laundry detergent using the freshwater flagellate Euglena gracilis. Chemosphere 84(10):1392–1400CrossRefGoogle Scholar
  3. Berard A, Pelte T (1996) Effets de l'atrazine sur l'évolution des peuplements phytoplanctoniques lacustres-etude en enceintes expérimentales in situ. Ecologie 27(4):195–201Google Scholar
  4. Berard A, Dorigo U, Mercier I, Becker-van Slooten K, Grandjean D, Leboulanger C (2003) Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53(8):935–944CrossRefGoogle Scholar
  5. Bonnineau C, Guasch H, Proia L, Ricart M, Geiszinger A, Romaní AM, Sabater S (2010) Fluvial biofilms: a pertinent tool to assess β-blockers toxicity. Aquat Toxicol 96(3):225–233CrossRefGoogle Scholar
  6. Brembu T et al (2017) The effects of phosphorus limitation on carbon metabolism in diatoms. Philos Trans R Soc B 372(1728):20160406CrossRefGoogle Scholar
  7. Cleuvers M (2005) Initial risk assessment for three β-blockers found in the aquatic environment. Chemosphere 59(2):199–205CrossRefGoogle Scholar
  8. Corcoll N et al (2012) The use of photosynthetic fluorescence parameters from autotrophic biofilms for monitoring the effect of chemicals in river ecosystems. In: Guasch H, Ginebreda A, Geiszinger A (eds) Emerging and priority pollutants in rivers. Springer, Berlin, pp 85–115CrossRefGoogle Scholar
  9. Corner EDS (1979) Pollution studies with marine plankton: part I. petroleum hydrocarbons and related compounds. Adv Mar Biol 15:289–380CrossRefGoogle Scholar
  10. Dahl E et al (1983) Effects of Ekofisk crude oil on an enclosed planktonic ecosystem. Marine ecology progress series. Oldendorf 14(1):81–91CrossRefGoogle Scholar
  11. Debenest T, Silvestre J, Coste M, Delmas F, Pinelli E (2008) Herbicide effects on freshwater benthic diatoms: induction of nucleus alterations and silica cell wall abnormalities. Aquat Toxicol 88(1):88–94CrossRefGoogle Scholar
  12. Dorigo U, Leboulanger C (2001) A pulse-amplitude modulated fluorescence-based method for assessing the effects of photosystem II herbicides on freshwater periphyton. J Appl Phycol 13(6):509–515CrossRefGoogle Scholar
  13. Dorigo U, Bourrain X, Berard A, Leboulanger C (2004) Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Sci Total Environ 318(1–3):101–114CrossRefGoogle Scholar
  14. Feisthauer KN, Sibley P (2001) Ecotoxicological effects of detergents on humans and aquatic organisms. In: Detergents and the environment. The Canadian experience and the India scenario, Tata McGraw Hill, New Delhi, pp 101–151Google Scholar
  15. Gautam S et al (2017) Morphological and physiological alterations in the diatom Gomphonema pseudoaugur due to heavy metal stress. Ecol Ind 72:67–76CrossRefGoogle Scholar
  16. Gordon R et al (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27(2):116–127CrossRefGoogle Scholar
  17. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella Nana Hustedt, And Detonula Confervacea (Cleve) Gran. Can J Microbiol 8(2):229–239CrossRefGoogle Scholar
  18. Hildebrand M, Lerch SJ, Shrestha RP (2018) Understanding diatom cell wall silicification-moving forward. Front Mar Sci 5:125CrossRefGoogle Scholar
  19. Hodson R, Azam F, Lee R (1977) Effects of four oils on marine bacterial populations: controlled ecosystem pollution experiment. Bull Mar Sci 27(1):119–126Google Scholar
  20. Hong Y-W, Yuan D-X, Lin Q-M, Yang T-L (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56(8):1400–1405CrossRefGoogle Scholar
  21. Larras F et al (2014) Linking diatom sensitivity to herbicides to phylogeny: a step forward for biomonitoring? Environ Sci Technol 48(3):1921–1930CrossRefGoogle Scholar
  22. Lawrence JR et al (2005) Effects of selected pharmaceuticals on riverine biofilm communities. Can J Microbiol 51(8):655–669CrossRefGoogle Scholar
  23. Leboulanger C, Rimet F, de Lacotte MH, Berard A (2001) Effects of atrazine and nicosulfuron on freshwater microalgae. Environ Int 26(3):131–135CrossRefGoogle Scholar
  24. Mainstone CP, Parr W (2002) Phosphorus in rivers—ecology and management. Sci Total Environ 282:25–47CrossRefGoogle Scholar
  25. Mironov O, Lanskaja L (1967) Biology and distribution of plankton of the southern seas. Oceanographical Commission, Moscow, pp 31–34Google Scholar
  26. Morin S et al (2012) Consistency in diatom response to metal-contaminated environments. In: Guasch H, Ginebreda A, Geiszinger A (eds) Emerging and priority pollutants in rivers. Springer, Berlin, pp 117–146CrossRefGoogle Scholar
  27. Morin S et al (2015) Cumulative stressors trigger increased vulnerability of diatom communities to additional disturbances. Microb Ecol 70(3):585–595CrossRefGoogle Scholar
  28. Mukherjee B (1995) The impact of detergents on plankton diversity in freshwaters. J Environ Biol 16(3):211–218Google Scholar
  29. Pan Y et al (1996) Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries. I. Batch culture studies. Mar Ecol Progress Ser 131:225–233CrossRefGoogle Scholar
  30. Pandey LK et al (2017) The use of diatoms in ecotoxicology and bioassessment: insights, advances and challenges. Water Res 118:39–58CrossRefGoogle Scholar
  31. Peres F, Florin D, Grollier T, Feurtet-Mazel A, Coste M, Ribeyre F, Ricard M, Boudou A (1996) Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms. Environ Pollut 94:141–152CrossRefGoogle Scholar
  32. Stevenson R, Pan Y, van Dam H (2010) Assessing environmental conditions in rivers and streams with diatoms. In: The diatoms: applications for the environmental and earth sciences, 2nd ed, vol 5785. Cambridge University Press, CambridgeGoogle Scholar
  33. Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Aquat Ecol 28(1):117–133CrossRefGoogle Scholar
  34. Van Leeuwen WJ, Orr BJ (2006) Spectral vegetation indices and uncertainty: insights from a user’s perspective. IEEE Trans Geosci Remote Sens 44(7):1931CrossRefGoogle Scholar
  35. Vinayak V et al (2014) Discovery of a diatom that oozes oil. Adv Sci Lett 20(7–9):1256–1267CrossRefGoogle Scholar
  36. Weiner JA, DeLorenzo ME, Fulton MH (2007) Atrazine induced species-specific alterations in the subcellular content of microalgal cells. Pest Biochem Physiol 87(1):47–53CrossRefGoogle Scholar
  37. Wetzel R, Likens G (1979) Limnological analyses WB Saunders. New YorkGoogle Scholar
  38. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50(2):75–104CrossRefGoogle Scholar
  39. Zetsche E-M, Meysman FJ (2012) Dead or alive? Viability assessment of micro-and mesoplankton. J Plankton Res 34(6):493–509CrossRefGoogle Scholar
  40. Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49(7):1092–1111CrossRefGoogle Scholar
  41. Zhu X et al (2012) Low concentrations of polycyclic aromatic hydrocarbons promote the growth of Microcystis aeruginosa. J Hazard Mater 237:371–375CrossRefGoogle Scholar
  42. Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I (2018) Current trends to comprehend lipid metabolism in diatoms. Progress Lipid Res 70:1–16CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied SciencesDr. Hari Singh Gour Central UniversitySagarIndia
  2. 2.Department of ChemistryDr. Hari Singh Gour Central UniversitySagarIndia
  3. 3.School of Mathematical and Physical SciencesDr. Hari Singh Gour Central UniversitySagarIndia

Personalised recommendations