Chromium-reducing and phosphate-solubilizing Achromobacter xylosoxidans bacteria from the heavy metal-contaminated soil of the Brass city, Moradabad, India

  • M. OvesEmail author
  • M. S. Khan
  • H. A. Qari
Original Paper


Chromium contamination in soil and water bodies is increasing predominantly due to inappropriate discharge from industries, and it is causing severe environmental problems and soil infertility. To improve soil quality, the sustainable approach needs to identify specific microbes capable of reducing chromium toxicity, enhancing soil P pool and expressing multiple plant growth-promoting activities. In the current investigation, a microbial strain OS2 was recuperated from polluted soil and was characterized by employing biochemical and molecular methods. Bacterial strain OS2 was identified as Achromobacter xylosoxidans by 16S rRNA quality sequencing, BLASTn, and phylogenetic examination. Strain OS2 survived well at high doses of heavy metals: Cr, Ni, Cu and Zn. A. xylosoxidans could solubilize up to 363 µg mL−1 tricalcium phosphate and reduced 100 µg mL−1 chromium after 24-h incubation. SEM and EDX analyses showed the highest accumulation of phosphate and binding with chromium up to 10.22 and 1.09 weight percent of total weight, respectively. A. xylosoxidans significantly produced IAA (26 µg mL−1) when grown up within 100 µg mL−1 chromium, as detected by HPLC. Further, strain OS2, when used as a microbial inoculant, decontaminated the chromium and concurrently improved the growth of mung bean plants while growing under metal stress conditions significantly in a sustainable manner.


Chromium reduction Phosphate solubilization Achromobacter xylosoxidans Siderophores IAA Heavy metal 



This research supported CSIR-UGC, India, in the form of SRF and Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia. We are thankful to Dr. Iqbal Hussain and Dr. Afzal Hussain to perform the HPLC and analyze the data (Chemistry Department, JMI, New Delhi, India).

Compliance with ethical standards

Conflict of interest

The authors have confirmed that no conflict interests exist.


  1. Ahemad M (2014) Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol (Praha) 4:321–332Google Scholar
  2. Aizawa T, Ve NB, Kimoto K, Iwabuchi N, Sumida H, Hasegawa I, Sasaki S, Tamura T, Kudo T, Suzuki K, Nakajima M, Sunairi M (2007) Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 57(7):1447–1452Google Scholar
  3. Amin A, Latif Z (2017) Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J Basic Microbiol 57(3):204–217. Epub 2016 Dec 2 Google Scholar
  4. Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457Google Scholar
  5. Banerjee S, Joshi SR, Mandal T, Halder G (2016) Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coal mine wastewater. Chemosphere 167:269–281Google Scholar
  6. Bhattacharya P, Barnebey A, Zemla M, Goodwin L, Auer M, Yannone SM (2015) Complete genome sequence of the chromate-reducing bacterium Thermoanaerobacter thermohydrosulfuricus strain BSB-33. Stand Genomic Sci 10:74Google Scholar
  7. Borivoj S (2003) Phosphatase activities (ACP, ALP) in agroecosystem soils. Diss. (sammanfattning/summary) Uppsala: Sveriges lantbruksuniv. Acta Univ Agric Suec Agrar 396:1401–6249Google Scholar
  8. Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286Google Scholar
  9. Bric JM, Bostock RM, Silversone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538Google Scholar
  10. Chen J, He F, Zhang X, Sun X, Zheng J, Zheng J (2014) Heavy metal pollution decreases microbial abundance, diversity, and activity within particle-size fractions of a paddy soil. FEMS Microbiol Ecol 87(1):164–181Google Scholar
  11. Chuhukova OV, Postrigan BN, Baimiev AK, Chemeris AV (2015) The effect of cadmium on the efficiency of development of legume-rhizobium symbiosis. Izv Akad Nauk Ser Biol 5:538Google Scholar
  12. Dazy M, Béraud E, Cotelle S, Meux E, Masfaraud JF (2008) Férard JFAntioxidant enzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica Hedw. Chemosphere 73(3):281–290Google Scholar
  13. Deng L, Zeng G, Fan C, Lu L, Chen X, Chen M, Wu H, He X, He Y (2015) Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Appl Microbiol Biotechnol 99(19):8259–8269Google Scholar
  14. Devers-Lamrani M, Pesce S, Rouard N, Martin-Laurent F (2014) Evidence for cooperative mineralization of diuron by Arthrobacter sp. BS2 and Achromobacter sp. SP1 isolated from a mixed culture enriched from diuron exposed environments. Chemosphere 117:208–215Google Scholar
  15. Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78(5):1404–1410Google Scholar
  16. Dye DW (1962) The inadequacy of the usual determinative tests for the identification of Xanthomonas sp. Nat Sci 5:393–416Google Scholar
  17. Eleftheriou EP, Michalopoulou VA, Adamakis ID (2015) Aberration of mitosis by hexavalent chromium in some Fabaceae members is mediated by species-specific microtubule disruption. Environ Sci Pollut Res Int 22(10):7590–7599Google Scholar
  18. Eroğlu M, Düşükcan M, Canpolat Ö (2016) Some heavy metals in the muscle of Capoeta trutta: risk assessment for the consumers. Cell Mol Biol (Noisy-le-grand) 62(6):22–26Google Scholar
  19. Fan ZY, Miao CP, Qiao XG, Zheng YK, Chen HH, Chen YW, Xu LH, Zhao LX, Guan HL (2016) Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. J Ginseng Res 40(2):97–104Google Scholar
  20. Fernando VA, Weerasena J, Lakraj GP, Perera IC, Dangalle CD, Handunnetti S, Premawansa S, Wijesinghe MR (2016) Lethal and sub-lethal effects on the Asian common toad Duttaphrynus melanostictus from exposure to hexavalent chromium. Aquat Toxicol 177:98–105Google Scholar
  21. Fett WF, Osman SF, Dunn MF (1987) Auxin production by plant-pathogenic pseudomonads and xanthomonads. Appl Environ Microbiol 53(8):1839–1845Google Scholar
  22. Garcia-Sánchez M, Garcia-Romera I, Cajthaml T, Tlustoš P, Száková J (2015) Changes in soil microbial community functionality and structure in a metal-polluted site: the effect of digestate and fly ash applications. J Environ Manag 162:63–73Google Scholar
  23. Gordon S, Weber RP (1951) The colorimetric estimation of IAA. Plant Physiol 26:192–195Google Scholar
  24. Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001) NreB from Achromobacter xylosoxidans 31A Is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183(9):2803–2807Google Scholar
  25. He Z, Hu Y, Yin Z, Hu Y, Zhong H (2016) Microbial diversity of chromium-contaminated soils and characterization of six chromium-removing bacteria. Environ Manag 57(6):1319–1328Google Scholar
  26. Hernández-Ruiz E, Alvarado-Flores J, Rubio-Franchini I, Ventura-Juárez J, Rico-Martínez R (2016) Adverse effects and bioconcentration of chromium in two freshwater rotifer species. Chemosphere 158:107–115Google Scholar
  27. Hernlem BJ, Vane LM, Sayles GD (1999) The application of siderophores for metal recovery and waste remediation: examination of correlations for prediction of metal affinities. Water Res 33:951–960Google Scholar
  28. Hong JW, Park JY, Gadd GM (2010) Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J Appl Microbiol 108:2030–2040Google Scholar
  29. Huang B, Xu S, Miao AJ, Xiao L, Yang LY (2015) Cadmium toxicity to Microcystis aeruginosa PCC 7806 and its microcystin-lacking mutant. PLoS ONE 10(1):e0116659Google Scholar
  30. Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH (2014a) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf 110:143–152Google Scholar
  31. Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014b) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293Google Scholar
  32. Jeong S, Moon HS, Nam K, Kim JY, Kim TS (2012) Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil. Chemosphere 88(2):204–210Google Scholar
  33. Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58(1):179–188Google Scholar
  34. John M, Heuss-Abichler S, Ullrich A, Rettenwander D (2016) Purification of heavy metal loaded wastewater from electroplating industry under synthesis of delafossite (ABO2) by “Lt-delafossite” process. Water Res 100:98–104Google Scholar
  35. Kabir AH (2016) Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress. Plant Biol (Stuttg) 18(4):710–719Google Scholar
  36. Kart A, Koc E, Dalginli KY, Gulmez C, Sertcelik M, Atakisi O (2016) The therapeutic role of glutathione in oxidative stress and oxidative DNA damage caused by hexavalent chromium. Biol Trace Elem Res 174(2):387–391Google Scholar
  37. Karthik C, Oves M, Thangabalu R, Sharma R, Santhosh SB, Arulselvi PI (2016) Cellulosimicrobium funkei-like to enhance the growth of Phaseolus vulgaris by modulating oxidative damage under chromium(VI) toxicity. J Adv Res 7(6):839–850Google Scholar
  38. Kingsley D, Park R, Bauer C (1962) India’s urban future: selected studies. University of California Press, BerkeleyGoogle Scholar
  39. Kumano T, Suzuki T, Shimizu S, Kobayashi M (2016) Nitrile-synthesizing enzyme: screening, purification, and characterization. J Gen Appl Microbiol 62(4):167–173Google Scholar
  40. Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manag 183:204–211Google Scholar
  41. Li H, Lian HF, Liu SQ, Yu XH, Sun YL, Guo HP (2015) Effect of cadmium stress on physiological characteristics of garlic seedlings and the alleviation effects of exogenous calcium. Ying Yong Sheng Tai Xue Bao 26(4):1193–1198Google Scholar
  42. Li Z, Ma T, Yuan C, Hou J, Wang Q, Wu L, Christie P, Luo Y (2016) Metal contamination status of the soil-plant system and effects on the soil microbial community near a rare metal recycling smelter. Environ Sci Pollut Res Int 17:17625–17634Google Scholar
  43. Li M, Guo R, Yu F, Chen X, Zhao H, Li H, Wu J (2018) Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. Int J Mol Sci 19(2):E443. Google Scholar
  44. Liu H (2016) Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil. Sci Total Environ 566–567:8–14Google Scholar
  45. Liu X, Wu G, Zhang Y, Wu D, Li X, Liu P (2015) Chromate reductase YieF from Escherichia coli enhances hexavalent chromium resistance of human HepG2 cells. Int J Mol Sci 16(6):11892–11902Google Scholar
  46. Lyu H, Gong Y, Tang J, Huang Y, Wang Q (2016) Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environ Sci Pollut Res Int 14:14472–14488Google Scholar
  47. Ma Y, Rajkumar M, Freitas H (2008) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90(2):831–837Google Scholar
  48. Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90(2):831–837Google Scholar
  49. McDonagh A, Sextro RG, Byrne MA (2012) Mass transport of deposited particles by surface-to-surface contact. J Hazard Mater 228:370–377Google Scholar
  50. McGrath SP, Cunliffe CH (1985) A simplified method for the extraction of metals Fe, Zn, Cu, Ni, Cd, Pb, Cr and Mn from soil and sewage sludge. J Sci Food Agric 36:794–798Google Scholar
  51. Michalak I, Chojnacka K (2011) Marycz K (2011) Using ICP–OES and SEM–EDX in biosorption studies. Mikrochim Acta. 172(1–2):65–74Google Scholar
  52. Mody BR, Bindra MO, Modi VV (1989) Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch Microbiol 1:2–5Google Scholar
  53. Navarrete F, La D, Fuente L (2014) Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions. Appl Environ Microbiol 80(3):1097–1107Google Scholar
  54. Ndeddy-Aka RJ, Babalola OO (2016) Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int J Phytoremed. 18(2):200–209Google Scholar
  55. Neubauer U, Nowak B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by thesiderophore desferroixamine B. Environ Sci Technol 34:2749–2755Google Scholar
  56. Ng SP, Davis B, Palombo EA, Bhave MA (2009) Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res Notes 2:38Google Scholar
  57. Ng SP, Palombo EA, Bhave M (2012) Identification of a copper-responsive promoter and development of a copper biosensor in the soil bacterium Achromobacter sp. AO22. World J Microbiol Biotechnol 28(5):2221–2228Google Scholar
  58. Nowicka B, Pluciński B, Kuczyńska P, Kruk J (2016) Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol Environ Saf 130:133–145Google Scholar
  59. Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A (2013) Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PloS one 8(3):e59140Google Scholar
  60. Oves M, Khan MS, Zaidi A, Ahmed AS, Azam A (2014) Production of plant-growth promoting substances by nodule forming symbiotic bacterium Rhizobium sp. OS1 is influenced by CuO, ZnO And Fe2O3 nanoparticles. The IIOAB J 5(4):1Google Scholar
  61. Park JE, Schlegel HG, Rhie HG, Lee HS (2004) Nucleotide sequence and expression of the NCR nickel and cobalt resistance in Hafnia alvei 5-5. Int Microbiol 7(1):27–34Google Scholar
  62. Płociniczak T, Kukla M, Wątroba R, Piotrowska-Seget Z (2013) The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L. Chemosphere 91(9):1332–1337Google Scholar
  63. Rahman MU, Shereen GUL, Haq UZM (2007) Reduction of chromium (VI) by locally isolated Pseudomonas sp. C-171. Turk J Biol 31:161–166Google Scholar
  64. Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, Saha AK, Ghosh S, Olsson B, Mandal A (2015) Bioremediation of hexavalent chromium(VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. J Environ Sci Health A Tox Hazard Subst Environ Eng 50(11):1136–1147Google Scholar
  65. Rodrigues CM, Takita MA, Coletta-Filho HD, Olivato JC, Caserta R, Machado MA, de Souza AA (2008) Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa. Appl Microbiol Biotechnol 77(5):1145–1157Google Scholar
  66. Roychowdhury R, Mukherjee P, Roy M (2016) Identification of chromium resistant bacteria from dry fly ash sample of Mejia MTPS thermal power plant, West Bengal, India. Bull Environ Contam Toxicol 96(2):210–216Google Scholar
  67. Sachdeva V, Hooda V (2016) Effect of changing the nanoscale environment on activity and stability of nitrate reductase. Enzyme Microb Technol 89:52–62Google Scholar
  68. Sangwan P, Kumar V, Joshi UN (2014) Effect of chromium(VI) toxicity on enzymes of nitrogen metabolism in clusterbean (Cyamopsis tetragonoloba L.). Enzyme Res 2014:9. Google Scholar
  69. Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic-resistant bacteria from arsenic-rich groundwater of West Bengal, India. Ecotoxicology 22(2):363–376Google Scholar
  70. Sarkar A, Sar P, Islam E (2016) Hexavalent chromium reduction by Microbacterium oleivorans A1: a possible mechanism of chromate-detoxification and -bioremediation. Recent Pat Biotechnol 9(2):116–129Google Scholar
  71. Sathvika T, Soni A, Sharma K, Praneeth M, Mudaliyar M, Rajesh V, Rajesh N (2018) Potential application of Saccharomyces cerevisiae and Rhizobium immobilized in multi-walled carbon nanotubes to adsorb hexavalent chromium. Sci Rep 8:9862Google Scholar
  72. Sayyed RZ, Patel PR, Shaikh SS (2015) Plant growth promotion and root colonization by EPS-producing Enterobacter sp. RZS5 under heavy metal contaminated soil. Indian J Exp Biol 53(2):116–123Google Scholar
  73. Schalk IJ, Hannauer M, Braud A (2011) Minireview new roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854Google Scholar
  74. Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4(2):272–275Google Scholar
  75. Sharma M, Tobschall H, Indra S (2003) Environmental impact assessment in the Moradabad industrial area (rivers Ramganga-Ganga interfluve, Ganga Plain, India. Environ Geol 43(8):957–967Google Scholar
  76. Silva BH, Neves FIC, Tavares T (2009) acc. Int J Chem Biol Eng 2:2Google Scholar
  77. Singh RP, Jha PN (2017) The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 9(8):1945Google Scholar
  78. Singh A, Gangwar C, Kumar A, Dwivedi SP, Tripathi A (2016) Appraising the heavy metal contamination of surface dust from waste electrical and electronic equipment (e-waste) recycling sites in Moradabad, India. J Environ Sci Toxicol Food Technol 10(6):52–59Google Scholar
  79. Stewart DI, Burke IT, Mortimer RJG (2007) Stimulation of microbial mediated chromate reduction in alkaline soil–water systems. Geomicrobiol J 4:655–669Google Scholar
  80. Theriault G, Nkongolo K (2016) Nickel and copper toxicity and plant response mechanisms in White Birch (Betula papyrifera). Bull Environ Contam Toxicol 97(2):171–176Google Scholar
  81. Tripathi RM, Khandekar RN, Raghunath R, Mishra UC (1989) Assessment of atmospheric pollution from toxic heavy metals in two cities in India. In: International conference on tropical micrometeorology and air pollution, atmospheric environment, vol 23(4), pp 879–883Google Scholar
  82. Tutic A, Novakovic S, Lutovac M, Biocanin R, Ketin S, Omerovic N (2015) The heavy metals in agrosystems and impact on health and quality of life. Open Access Maced J Med Sci 3(2):345–355Google Scholar
  83. Van Engelen MR, Peyton BM, Mormile MR, Pinkart HC (2008) Fe(III), Cr(VI), and Fe(II) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington. Biodegradation 19:841–850Google Scholar
  84. Venzhik V, Talanova VV, Titov AF, Kholoptseva ES (2015) Similarities and differences in wheat plant responses to low temperature and cadmium. Izv Akad Nauk Ser Biol 6:597–604Google Scholar
  85. Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67(1):75–81Google Scholar
  86. Wichard T, Bellenger JP, Morel FM, Kraepiel AM (2009) Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Environ Sci Technol 43:7218–7224Google Scholar
  87. Wise SS, Holmes AL, Liou L, Adam RM, Wise JP (2016) Hexavalent chromium induces chromosome instability in human urothelial cells. Toxicol Appl Pharmacol 296:54–60Google Scholar
  88. Xian Y, Wang M, Chen W (2015) Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere 139:604–608Google Scholar
  89. Yang J, Yang F, Yang Y, Xing G, Deng C, Shen Y, Luo L, Li B, Yuan HA (2016) Proposal of “core enzyme” bioindicator in long-term Pb–Zn ore pollution areas based on topsoil property analysis. Environ Pollut 213:760–769Google Scholar
  90. Yin N, Zhang Z, Wang L, Qian K (2016) Variations in organic carbon, aggregation, and enzyme activities of gangue–fly ash–reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ Sci Pollut Res Int 17:17840–17849Google Scholar
  91. Zhang Z, Fan X, Gao X, Zhang XH (2014) Achromobacter sediminum sp. nov., isolated from deep subseafloor sediment of South Pacific Gyre. Int J Syst Evol Microbiol 64(7):2244–2249Google Scholar
  92. Zhang Y, Lu X, Wang N, Xin M, Geng S, Jia J, Meng Q (2016) Heavy metals in aquatic organisms of different trophic levels and their potential human health risk in Bohai Bay, China. Environ Sci Pollut Res Int 17:17801–17810Google Scholar
  93. Zhu W, Chai L, Ma Z, Wang Y, Xiao H, Zhao K (2008) Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. Strain Ch1. Microbiol Res 163(6):616–623Google Scholar
  94. Zhu P, Jiao S, Jiang P, Zeng X, Luo Q, Wang L (2015) Identification of hexavalent chromium reducing bacteria Cr4-1 and optimization of its reduction conditions. Wei Sheng Yan Jiu 44(2): 201–205, 210Google Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Centre of Excellence in Environmental StudiesKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
  3. 3.Department of Biological ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations