Advertisement

Photocatalysis in an external four-lamp reactor: modelling and validation—dichloroacetic acid photo-oxidation in the presence of TiO2

  • F. J. Rivas
  • A. Hidalgo
  • R. R. SolísEmail author
  • M. Tierno
Original Paper
  • 52 Downloads

Abstract

Monte Carlo (MC) approach has been used to simulate the photocatalysis process in a photoreactor surrounded by four UV-A lamps attached to a cylindrical aluminum-covered surface. The asymmetrical configuration of the experimental setup suggests the use of MC as a suitable mathematical tool to solve the radiation transfer equation (RTE). Reflectance of frontiers in the photocatalytic reactor has been optimized to minimize the differences between the experimental and the theoretical overall volumetric rate of photon absorption (OVRPA). OVRPA increases as the TiO2 concentration is raised up to values in the proximity of 0.1 g L−1; thereafter, this parameter remains constant. The theoretical results have been validated by means of the photocatalysis of dichloroacetic acid (DCA). Validation has been carried out by completing experiments at different initial DCA concentrations and TiO2 doses. MC algorithm facilitates the solution of the RTE in complex photocatalytic systems. The use of imaginary frontiers reduces computational efforts with no loss in model validation. DCA photocatalysis sustains the theoretical results obtained under different experimental conditions.

Keywords

Mathematical modelling Photocatalysis Reactor design Kinetics 

Notes

Acknowledgements

The authors thank the economic support received from Gobierno de Extremadura (projects GRU10012 and GRU15033) and MINECO of Spain (CTQ2015/64944-R and red FOTOCAT CTM2015-71054-REDT). Mr. Rafael Rodríguez Solís also acknowledges Gobierno de Extremadura (Consejería de Empleo Empresa e Innovación) and European Social Funds for his Ph.D. Grant (PD12058).

References

  1. Almquist CB, Biswas P (2001) A mechanistic approach to modelling the effect of dissolved oxygen in photo-oxidation reactions on titanium dioxide in aqueous systems. Chem Eng Sci 6:3421–3430CrossRefGoogle Scholar
  2. Bahnemann DW, Hilgendorff M, Memming R (1997) Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J Phys Chem B 101:4265–4275CrossRefGoogle Scholar
  3. Brandi RJ, Alfano OM, Cassano AE (2000) Evaluation of radiation absorption in slurry photocatalytic reactors.1. Assessment of methods in use and new proposal. Environ Sci Technol 34:2623–2630CrossRefGoogle Scholar
  4. Cabrera A, Santos-Juanes L, García JL, Casas JL, Maldonado MI, Li Puma G, Sánchez JA (2015) Modelling the photo-Fenton oxidation of the pharmaceutical paracetamol in water including the effect of photon absorption (VRPA). Appl Catal B Environ 166–167:295–301CrossRefGoogle Scholar
  5. Camera-Roda G, Augugliaro V, Cardillo AG, Loddo V, Palmisano L, Parrino F, Santarelli F (2016) A reaction engineering approach to kinetic analysis of photocatalytic reactions in slurry systems. Catal Today 259(1):87–96CrossRefGoogle Scholar
  6. Casado C, Marugán J, Timmers R, Muñoz M, van Grieken R (2017) Comprehensive multiphysics modeling of photocatalytic processes by computational fluid dynamics based on intrinsic kinetic parameters determined in a differential photoreactor. Chem Eng J 310:368–380CrossRefGoogle Scholar
  7. Cassano AE, Martin CA, Brandi RJ, Alfano OM (1995) Photoreactor analysis and design: fundamentals and applications. Ind Eng Chem Res 34:2155–2201CrossRefGoogle Scholar
  8. Changrani R, Raupp GB (1999) Monte Carlo simulation of the radiation field in a reticulated foam photocatalytic reactor. AIChE J 45:1085–1094CrossRefGoogle Scholar
  9. Feitz AJ, Waite TD (2003) Kinetic modelling of TiO2 catalyzed photodegradation of trace levels of microcystin-LR. Environ Sci Technol 37:561–568CrossRefGoogle Scholar
  10. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21CrossRefGoogle Scholar
  11. Grčić I, Li Puma G (2017) Six-flux absorption-scattering models for photocatalysis under wide-spectrum irradiation sources in annular and flat reactors using catalysts with different optical properties. Appl Catal B 211:222–234CrossRefGoogle Scholar
  12. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218CrossRefGoogle Scholar
  13. Imoberdorf GE, Taghipour F, Keshmiri M, Mohseni M (2008) Predictive radiation field modelling for fluidized bed photocatalytic reactors. Chem Eng Sci 63:4228–4238CrossRefGoogle Scholar
  14. Li Puma G (2005) Dimensionless analysis of photocatalytic reactors using suspended solid photocatalysts. Chem Eng Res Des 83:820–826CrossRefGoogle Scholar
  15. Li Puma G, Khor JN, Brucato A (2004) Modelling of an annular photocatalytic reactor for water purification: oxidation of pesticides. Environ Sci Technol 38:3737–3745CrossRefGoogle Scholar
  16. Mena E, Rey A, Beltrán FJ (2018) TiO2 photocatalytic oxidation of a mixture of emerging contaminants. A kinetic study independent of radiation absorption based on the direct–indirect model. Chem Eng J 339:369–380CrossRefGoogle Scholar
  17. Monllor-Satoca D, Gomez R, Gonzalez-Hidalgo M, Salvador P (2007) The ″Direct–Indirect″ model: an alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catal Today 129:247–255CrossRefGoogle Scholar
  18. Moreira J (2011) Photocatalytic degradation of phenolic compounds in water: irradiation and kinetic modelling. University of Western Ontario, LondonGoogle Scholar
  19. Moreira J, Serrano B, Ortiz A, de Lasa H (2010) Evaluation of photon absorption in an aqueous TiO2 slurry reactor using Monte Carlo simulations and macroscopic balance. Ind Eng Chem Res 49:10524–10534CrossRefGoogle Scholar
  20. Moreira J, Serrano B, Ortiz A, de Lasa H (2011) TiO2 absorption and scattering coefficients using Monte Carlo method and macroscopic balances in a photo-CREC unit. Chem Eng Sci 66:5813–5821CrossRefGoogle Scholar
  21. Orozco SL, Villafán-Vidales HI, Arancibia-Bulnes CA (2012) Photon absorption in a hybrid slurry reactor: assessment of differential approximations. AIChE J 58:3256–3265CrossRefGoogle Scholar
  22. Pareek VK, Adesina AA (2004) Light intensity distribution in a photocatalytic reactor using finite volume. AIChE J 50:1273–1288CrossRefGoogle Scholar
  23. Pareek VK, Ching S, Tadé M, Adesina AA (2008) Light intensity distribution in heterogeneous photocatalytic reactors. Asia Pac J Chem Eng 3:171–201CrossRefGoogle Scholar
  24. Rivas J, Solis RR, Gimeno O, Sagasti J (2015) Photocatalytic elimination of aqueous 2-methyl-4-chlorophenoxyacetic acid in the presence of commercial and nitrogen-doped TiO2. Int J Environ Sci Technol 12:513–526CrossRefGoogle Scholar
  25. Romero RL, Alfano OM, Cassano AE (2003) Radiation field in an annular, slurry photocatalytic reactor. 2. Model and experiments. Ind Eng Chem Res 42:2479–2488CrossRefGoogle Scholar
  26. Romero RL, Alfano OM, Cassano AE (2009) Photocatalytic reactor employing titanium dioxide: from a theoretical model to realistic experimental results. Ind Eng Chem Res 48:10456–10466CrossRefGoogle Scholar
  27. Salaices M, Serrano B, de Lasa H (2002) Experimental evaluation of photon absorption in an aqueous TiO2 slurry reactor. Chem Eng J 90:219–229CrossRefGoogle Scholar
  28. Sánchez-Pérez JA, Soriano-Molina P, Rivas G, García Sánchez JL, Casas López JL, Fernández Sevilla JM (2017) Effect of temperature and photon absorption on the kinetics of micropollutants removal by solar photo-Fenton in raceway pond reactors. Chem Eng J 310(2):464–472CrossRefGoogle Scholar
  29. Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2005) Experimental method to evaluate the optical properties of aqueous titanium dioxide suspensions. Ind Eng Chem Res 44:6643–6649CrossRefGoogle Scholar
  30. Toepfer B, Gora A, Li Puma G (2006) Photocatalytic oxidation of multicomponent solutions of herbicides: reaction kinetics analysis with explicit photon absorption effects. Appl Catal B Environ 68:171–180CrossRefGoogle Scholar
  31. Valadés-Pelayo PJ, Moreira J, Serrano B, de Lasa H (2014) Boundary conditions and phase functions in a Photo-CREC Water-II reactor radiation field. Chem Eng Sci 107:123–136CrossRefGoogle Scholar
  32. Valadés-Pelayo PJ, Guayaquil Sosa F, Serrano B, de Lasa H (2015) Photocatalytic reactor under different external irradiance conditions: validation of a fully predictive radiation absorption model. Chem Eng Sci 126:42–54CrossRefGoogle Scholar
  33. Zazueta AL, Destaillats H, Li Puma G (2013) Radiation field modelling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method. Chem Eng J 217:475–485CrossRefGoogle Scholar
  34. Zhai X, Chen Z, Zhao S, Wang H, Yang L (2010) Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders. J Environ Sci 22:1527–1533CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Química y Química FísicaUniversidad de ExtremaduraBadajozSpain
  2. 2.Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS)BadajozSpain

Personalised recommendations