Skip to main content

Advertisement

Log in

Estimating the risk of groundwater contamination and environmental impact of pesticides in an agricultural basin in Argentina

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Due to the increase in pesticide detection in groundwater and other environmental components, some indicators, such as the attenuation factor (AF) and the environmental impact quotient (EIQ), have been proposed to determine potential pesticide contamination. Thus, it is possible to select pest management strategies in order to minimize the risk of environmental impact. The objective of this work was to evaluate the potential groundwater contamination as well as the environmental impact due to pesticide use on the main crops within the Dulce creek basin (southeast Buenos Aires Province, Argentina). In the present study, 17 herbicides, 20 fungicides and 14 insecticides were selected. According to AF values, Imazetapir and Picloram herbicides, and Clothianidin insecticide were responsible for the greatest risk of groundwater contamination. Fungicides were classified as very immobile to moderately mobile, which determined an unlikely to highly unlikely risk of contamination potential tied to them. Results showed that herbicides would pose the greatest risk of potential groundwater contamination within the studied basin, followed by insecticides and finally by fungicides. Most pesticides showed a low EIQ, but the high number of applications of some of them, particularly in potatoes, significantly increased their dangerousness. Potato was the riskiest crop due to the high use of fungicides associated with its production. These results should be useful for the decision-making of the people or institutions related to the planning of the use of environmental resources in order to promote more sustainable forms of agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agriculture and Environment Research Unit (AERU), University of Hertfordshire (2017) Pesticide properties database (PPDB). https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm. Accessed 10 Feb 2017

  • Alister C, Kogan M (2006) ERI: environmental risk index. A simple proposal to select agrochemicals for agricultural use. Crop Prot 25(3):202–211

    Article  CAS  Google Scholar 

  • Andrade AS, De Queiroz VG, De Lima DT, Diaz Drumond LC (2011) Análise de risco de contaminacao de aguas superficiais e subterraneas por pesticidas em municipios do Alto Paranaíba. Quim Nova 34(7):1129–1135

    Article  CAS  Google Scholar 

  • Aparicio V, Costa JL, Zamora M (2008) Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina. Agric Water Manag 95(12):1361–1372

    Article  Google Scholar 

  • Aparicio V, De Geronimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93(9):1866–1873

    Article  CAS  Google Scholar 

  • Bedmar F, Gianelli V, Angelini H, Viglianchino L (2015) Riesgo de contaminación del agua subterránea con plaguicidas en la cuenca del arroyo El Cardalito, Argentina. RIA Rev Investig Agropecu 41(1):70–82

    Google Scholar 

  • Bedmar F, Gimenez D, Costa JL, Daniel P (2017) Persistence of acetochlor, atrazine, and s-metolachlor in surface and subsurface horizons of 2 typic argiudolls under no-tillage. Environ Toxicol Chem 36(11):3065–3073

    Article  CAS  Google Scholar 

  • Bernard H, Chabalier P, Chopart J, Legube B, Vauclin M (2005) Assessment of herbicide leaching risk in two tropical soils of reunion island (France). J Environ Qual 34(2):534–543

    Article  CAS  Google Scholar 

  • Biddinger DJ, Leslie TW, Joshi NK (2014) Reduced-risk pest management programs for eastern U.S. peach orchards: effects on arthropod predators, parasitoids, and select pests. J Econ Entomol 107(3):084–1091

    Article  Google Scholar 

  • Brewer MJ, Goodell PB (2012) Approaches and incentives to implement Integrated Pest Management that addresses regional and environmental issues. Annu Rev Entomol 57:41–59

    Article  CAS  Google Scholar 

  • Bues R, Dadomo M, Lyannaz JP, di Lucca G, Macua Gonzalez JI, Prieto Losada H, Dumas Y (2003) Evaluation of the environmental impact of the pesticides applied in processing tomato cropping. International Society for Horticultural Science (ISHS). Acta Hortic 613:255–258

    Article  Google Scholar 

  • Carreño LV, Viglizzo EF (2010) Efecto de la agricultura sobre la provisión de servicios ecosistémicos. In: Viglizzo EF, Jobággy E (eds) Expansión de la frontera agrícola en Argentina y su impactos ecológico ambientales. Ediciones INTA, Buenos Aires, pp 47–53

    Google Scholar 

  • CASAFE (2015) Guía de productos fitosanitarios para la República Argentina, 17th edn. Cámara de sanidad agropecuaria y fertilizantes, Buenos Aires

    Google Scholar 

  • Clemente G, Bedogni MC, Crovo V, De Lasa C, Puricelli M, Salvalaggio A, Huarte M (2016) Sistema de Gestión de Calidad “SGC Sanidad Papa”: redes neuronales y sistemas expertos para el manejo del Tizón Tardío. https://tizonlatino.wordpress.com/2016/10/25/taller-tizon-latino-2016/. Accessed 21 June 2017

  • De Geronimo E, Aparicio VC, Barbaro S, Portocarrero R, Jaime S, Costa JL (2014) Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107:423–431

    Article  Google Scholar 

  • Díaz-Díaz R, García-Hernández JE, Loague K (1998) Leaching potentials of four pesticides used for bananas in the Canary Islands. J Environ Qual 27:562–572

    Article  Google Scholar 

  • Dushoff J, Caldwell B, Mohler CI (1994) Evaluating the environmental effect of pesticides: a critique of the environmental impact quotient. Am Entomol 40:180–184

    Article  Google Scholar 

  • EPA (2017) Databases related to pesticide risk assessment. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/databases-related-pesticide-risk-assessment. Accessed 12 Jan 2017

  • Funari E, Donati L, Sandroni D, Vighi M (1995) Pesticide levels in groundwater: value and limitations of monitoring. In: Vighi M, Funari E (eds) Pesticide risk in groundwater. CRC Press, Boca Raton, pp 3–44

    Google Scholar 

  • Gallivan GJ, Surgeoner GA, Kovach J (2001) Pesticide risk reduction on crops in the province of Ontario. J Environ Qual 30:798–813

    Article  CAS  Google Scholar 

  • Gianelli V, Bedmar F, Angelini H, Aparicio V, Costa JL (2010) Riesgo de contaminación del agua subterránea con plaguicidas en la cuenca del arroyo Pantanoso (R. Argentina). In: Fernández Turiel JL, González Hernández MI (eds) Contaminación, Descontaminación y Restauración Ambiental en Iberoamérica. Sociedad Iberoamericana de Física y Química Ambiental, Salamanca, pp 135–152

    Google Scholar 

  • Goldberg NP (1998) Chile pepper diseases. New Mexico State University. https://aces.nmsu.edu/pubs/_circulars/CR549/welcome.html. Accessed 21 June 2017

  • Guigón-López C, Gonzalez- Gonzalez PA (2007) Manejo de plagas en el cultivo de chile y su impacto ambiental en la zona agrícola de Jimenez- Villa López, Chihuahua, México. Tecnociencia Chihuah 1(2):36–46

    Google Scholar 

  • Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environ Toxicol Chem 8:339–357

    Article  CAS  Google Scholar 

  • Instituto Nacional de Tecnología Agropecuaria, INTA (2015) Carta de Suelos de la Provincia de Buenos Aires (1:50.000). Ministerio de Agroindustria. https://inta.gob.ar/documentos/carta-de-suelos-de-la-provincia-de-buenos-aires Accessed 17 Nov 2016

  • Khan MA, Liang T (1989) Mapping pesticide contamination potencial. Environ Manage 13:233–242

    Article  Google Scholar 

  • Kookana R, Correll R, Miller R (2005) Pesticide impact rating index: a pesticide risk indicator for water quality. Water Air Soil Poll 5:45–65

    Article  CAS  Google Scholar 

  • Kovach J, Petzoldt C, Degni J, Tette J (1992) A method to measure the environmental impact of pesticides. N Y Food Life Sci Bull 139:1–8

    Google Scholar 

  • Krogh KA, Halling-Sorensen B, Mogensen BB, Vejrup KV (2002) Environmental properties and effects of nonionic surfactant adjuvants in pesticides: a review. Chemosphere 50:871–901

    Article  Google Scholar 

  • Larramendi ML, Soloneski S (2012) Integrated pest management and pest control—current and future tactics. InTech Publisher, Rijeka

    Google Scholar 

  • Lima L, Zelaya K, Massone HE (2011) Groundwater vulnerability assessment combining the drastic and dyna-clue model in the Argentine pampas. Environ Manage 47:828–839

    Article  Google Scholar 

  • Lima L, Romanelli A, Massone HE (2015) Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in anagricultural watershed. Sci Total Environ 530–531:333–346

    Article  Google Scholar 

  • Mamy L, Barriuso E (2005) Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 61:844–855

    Article  CAS  Google Scholar 

  • Metcalf RL (1994) Insecticidas en el manejo de plagas. In: Metcalf R, Luckman WH (eds) Introducción al manejo de plagas de insectos. Ed. Limusa, México, pp 271–344

    Google Scholar 

  • Natale OE, Allevato H, Marzocca MC, Sylvester S (2002) Evaluación de factores de riesgo debidos a plaguicidas en el medio ambiente rural. Instituto Nacional del Agua, Gerencia de programas y proyectos programa nacional de calidad de aguas, Centro de Tecnología del uso del agua. Ezeiza. Argentina. https://www.sertox.com.ar/es/info/apuntes/2005/0202/05.pdf. Accessed 25 Nov 2017

  • Oregon State University, Extension Toxicology Network, Extension Pesticide Properties Database (2017) NaTional Pesticide Information Center. http://npic.orst.edu/ppdmove.htm Accessed 10 Jan 2017

  • Panigatti JL (2010) Argentina: 200 años, 200 suelos. Ediciones INTA, Buenos Aires

    Google Scholar 

  • Paz JM, Rubio JL (2006) Application of a GIS-AF/RF model to assess the risk of herbicide leaching in a citrus-growing area of the Valencia Community, Spain. Sci Total Environ 371(1–3):44–54

    Article  Google Scholar 

  • Pedigo PL (1991) Entomology and pest management. MacMillan, New York

    Google Scholar 

  • Postigo C, Barceló D (2015) Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 503–504:32–47

    Article  Google Scholar 

  • Rao PSC, Hornsby AG, Jessup RE (1985) Indices for ranking the potential for pesticide contamination of groundwater. Proc Soil Crop Sci Soc Fla 44:1–8

    CAS  Google Scholar 

  • Riha S, Levitan L, Hutson J (1996) Environmental impact assessment: the quest for a holistic picture. In: Proceedings third national IPM symposium/workshop, Washington DC, USDA/Economic Research Service

  • Sainz Rozas H, Echeverría HE, Angelini HP (2011) Niveles de carbono orgánico y pH en suelos agrícolas de las regiones pampeana y extrapampeana argentina. Ciencia del Suelo 29(1):29–37

    Google Scholar 

  • Servicio Meteorológico Nacional (2017) https://www.smn.gob.ar/. Accessed 9 Jan 2017

  • Shukla S, Mostaghimi S, Shanholtz VO, Collins MC (1998) Gis-based modeling approach for evaluating groundwater vulnerability to pesticides. J Am Water Resour Assoc 34(6):1275–1293

    Article  CAS  Google Scholar 

  • Spadotto CA, Gomes MAF, Hornsby AG (2002) Pesticide leaching potential assessment in multi-layered soils. Pestic Rev Ecotoxicol Meio Ambient 12:1–12

    CAS  Google Scholar 

  • Surgan M, Condon M, Cox C (2010) Pesticide risk indicators: unidentified inert ingredients compromise their integrity and utility. Environ Manag 45(4):834–841

    Article  Google Scholar 

  • Vighi M, Di Guardo A (1995) Predictive approaches for the evaluation of pesticide exposure. In: Vighi M, Funari E (eds) Pesticide risk in groundwater. CRC Press, Boca Raton, pp 73–100

    Google Scholar 

  • Wagenet, RJ, Hutson JL (1989) LEACHM leaching estimation and chemistry model. A process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Continuum: Vol. 2, Version 2. NYS Water Resources Institute, Center for Environmental Research, Cornell University, Ithaca, New York

  • Walter-Echols G, van der Wulp H (2008) Use of environmental impact quotient in IPM programs in Asia (review). FAO IPM Impact Assessment Series, FAO, Rome

Download references

Acknowledgements

This work was supported by the Universidad Nacional de Mar del Plata, Argentina through projects AGR 308/10 and AGR 368/12, and project PNNAT 1128043 from Instituto Nacional de Tecnología Agropecuaria (INTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bedmar.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Additional information

Editorial responsibility: Agnieszka Galuszka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaona, L., Bedmar, F., Gianelli, V. et al. Estimating the risk of groundwater contamination and environmental impact of pesticides in an agricultural basin in Argentina. Int. J. Environ. Sci. Technol. 16, 6657–6670 (2019). https://doi.org/10.1007/s13762-019-02267-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02267-w

Keywords

Navigation