Advertisement

Functionalized nanomaterials: a new avenue for mitigating environmental problems

  • S. ChaudharyEmail author
  • P. Sharma
  • P. Chauhan
  • R. Kumar
  • A. Umar
Review

Abstract

Recently, the environmental pollutions (air, water and soil) caused by the release of large amount of toxins, through extensive industrialization, have received a great attention by the environmental scientists. Thus, there is a serious need for efficient environmental remediation approaches. Recently, nanomaterials have obtained immense interest due to their enormous prospective in the environmental remediation. Researchers have developed biocompatible and safer tools for the development of nanomaterials. This review article is demonstrating that how different biocompatible nanomaterials are synthesized and used for the ecological remediation applications. Different schemes are explained for the synthesis of nanomaterials with high biocompatibility and their application in the field of environmental remediation. The use of various functional nanomaterials for the treatment of environmental pollutions (air, water and soil) is discussed in detail.

Keywords

Functional nanomaterials Environmental remediation Catalytic degradation Adsorption Environmental pollution 

Notes

Acknowledgments

Priyanka Sharma is thankful to DST INSPIRE for SRF (IF 140267). Savita Chaudhary is thankful to DST Inspire Faculty award [IFACH-17] and DST Purse grants II for financial assistance and Rajeev Kumar is thankful to DST, SERB/F/8171/2015-16 and UGC (F. No. 194-2/2016 IC) for the financial support. Ahmad Umar acknowledges the Ministry of Higher Education, Saudi Arabia for granting Promising Centre for Sensors and Electronics Devices (PCSED) to Najran University, Saudi Arabia. The authors wish to thank all who assisted in conducting this work.

Authors’ contribution

SC, PS, PC and AU have collected the literature and wrote the review. SC, AU and RK read, correct and revise the review.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

References

  1. Abdel Aal G, Atekwana EA, Werkema DD (2017) Complex conductivity response to silver nanoparticles in partially saturated sand columns. J Appl Geophys 137:73–81CrossRefGoogle Scholar
  2. Agnieszka B, Tomasz C, Jerzy W (2014) Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology 23(7):1234–1244CrossRefGoogle Scholar
  3. An BL, Fu YH, Dai FZ, Xu JQ (2015) Platinum nanoparticle modified TiO2 nanorods with enhanced catalytic performances. J Alloys Compd 622:426–431CrossRefGoogle Scholar
  4. Arabpour N, Ejhieh AN (2016) Photodegradation of cotrimaxazole by clinoptilolite-supported nickel oxide. Process Saf Environ Prot 102:431–440CrossRefGoogle Scholar
  5. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11Google Scholar
  6. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F (2017) Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 190:64–83CrossRefGoogle Scholar
  7. Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32(5):271–280CrossRefGoogle Scholar
  8. Bernal JD, Carlisle CH (1968) Fields of application of generalized crystallography. Kristallografiya 13(5):927–951Google Scholar
  9. Bernd N (2010) Pollution prevention and treatment using nanotechnology. In: Nanotechnology, Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  10. Bhagya NP, Prashanth PA, Raveendra RS, Sathyanarayani S, Ananda S, Nagabhushana BM, Nagabhushana H (2016) Adsorption of hazardous cationic dye onto the combustion derived SrTiO3 nanoparticles: kinetic and isotherm studies. J Asian Ceram Soc 4(1):68–74CrossRefGoogle Scholar
  11. Bromberg L, Hatton TA (2007) Decomposition of toxic environmental contaminants by recyclable catalytic, superparamagnetic nanoparticles. Ind Eng Chem Res 46:3296–3303CrossRefGoogle Scholar
  12. Brown A, Eickhoff C, Reinders JEA, Raben I, Spruijt M, Neele F (2017a) Impacts: framework for risk assessment of CO2 transport and storage infrastructure. Energy Procedia 114:6501–6513CrossRefGoogle Scholar
  13. Brown DM, Okoro S, Van Gils J, Van Spanning R, Bonte M, Hutchings T, Linden O, Egbuche U, Bruun KB, Smith JWN (2017b) Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in niger delta soils. Sci Total Environ 596–597:284–292CrossRefGoogle Scholar
  14. Brunsting JH, McBean EA (2014) In Situ treatment of arsenic-contaminated groundwater by air sparging. J Contam Hydrol 159:20–35CrossRefGoogle Scholar
  15. Buoli M, Grassi S, Caldiroli A, Carnevali GS, Mucci F, Iodice S, Cantone L, Pergoli L, Bollati V (2018) Is there a link between air pollution and mental disorders? Environ Int 118:154–168CrossRefGoogle Scholar
  16. Cachada A, Rocha-Santos T, Duarte AC (2018) Soil and pollution. In: Soil pollution. Elsevier, pp 1–28Google Scholar
  17. Chaudhary S, Sharma P, Renu KR (2016) Hydroxyapatite doped CeO2 nanoparticles: impact on biocompatibility and dye adsorption properties. RSC Adv 6:62797–62809CrossRefGoogle Scholar
  18. Chaudhay S, Kaur Y, Jayee B, Chaudhary GR, Umar A (2018) NiO nanodisks: highly efficient visible-light driven photocatalyst, potential scaffold for seed germination of Vigna radiata and antibacterial properties. J Clean Prod 190:563–576CrossRefGoogle Scholar
  19. Chen Y, Wen X, Wang B, Nie P (2017a) Agricultural pollution and regulation: How to subsidize agriculture? J Clean Prod 164:258–264CrossRefGoogle Scholar
  20. Chen F, Gong AS, Zhu M, Chen G, Lacey SD, Jiang F, Li Y, Wang Y, Dai J, Yao Y, Song J, Liu B, Fu K, Das S, Hu L (2017b) Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11:4275–4282CrossRefGoogle Scholar
  21. Cheng XQ, Wang ZX, Guo J, Ma J, Shao L (2018) Designing multifunctional coatings for cost-effectively sustainable water remediation. ACS Sustain Chem Eng 6:1881–1890CrossRefGoogle Scholar
  22. Chia SL, Leong DT (2016) Reducing ZnO nanoparticles toxicity through silica coating. Heliyon 2(10):177–184CrossRefGoogle Scholar
  23. Choi CH, Yu S, Han IS, Kho BK, Kang DG, Lee HY, Seo MS, Kong JW, Kim G, Ahn JW (2016) Development and demonstration of pem fuel-cell-battery hybrid system for propulsion of tourist boat. Int J Hydrogen Energy 41(5):3591–3599CrossRefGoogle Scholar
  24. Corsi I, Winther-Nielsen M, Sethi R, Punta C, Della Torre C, Libralato G, Lofrano G, Sabatini L, Aiello M, Fiordi L (2018) Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf 154:237–244CrossRefGoogle Scholar
  25. Crane RA, Dickinson M, Scott TB (2015) Nanoscale zero-valent iron particles for the remediation of plutonium and uranium contaminated solutions. Chem Eng J 262:319–325CrossRefGoogle Scholar
  26. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoaprticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998CrossRefGoogle Scholar
  27. Díaz EC, Pfeiffer C, Kastl L, Gil PR, Simonet B, Valcárcel M, Lamana JJ, Laborda F, Parak WJ (2013) The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Part Part Syst Charact 30(12):1079–1085CrossRefGoogle Scholar
  28. Dong Y, Xing L, Hu F, Umar A, Wu X (2018) Efficient removal of organic dyes molecules by grain-like α-Fe2O3 nanostructures under visible light radiation. Vacuum 150:35–40CrossRefGoogle Scholar
  29. Dongliang L, Hao P, Deqing L (2017) Thermal conductivity enhancement of clathrate hydrate with nanoparticles. Int J Heat Mass Transf 104:566–573CrossRefGoogle Scholar
  30. Du W, Torresdey JL, Ji R, Yin Z, Zhu J, Peralta-Videa JR, Guo H (2015) Physiological and biochemical changes improved by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49:11884–11893CrossRefGoogle Scholar
  31. Dulal SMSI, Won MS, Shim YB (2010) Carbon fiber supported platinum nanoparticles for electrooxidation of methanol and phenol. J Alloys Compd 494(1–2):463–467CrossRefGoogle Scholar
  32. Earnhart D (2013) Water pollution from industrial sources. In: Encyclopedia of energy, natural resource, and environmental economics, Elsevier, pp 114–120Google Scholar
  33. Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y (2017) The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged nps to Caco-2 and HepG2 cells. Chem Biol Interact 278:40–47CrossRefGoogle Scholar
  34. Frutos FJG, Escolano O, García S, Babín M, Fernández MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183(1–3):806–813CrossRefGoogle Scholar
  35. Fu CC, Juang RS, Huq MM, Hsieh CT (2016) Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts. J Taiwan Inst Chem Eng 67:338–345CrossRefGoogle Scholar
  36. Gan L, Li B, Guo M, Weng X, Wang T, Chen Z (2018) Mechanism for removing 2,4-dichlorophenol via adsorption and fenton-like oxidation using iron-based nanoparticles. Chemosphere 206:168–174CrossRefGoogle Scholar
  37. Gavina A, Antunes SC, Pinto G, Claro MT, Santos C, Gonçalves F, Pereira R (2013) Can physiological endpoints improve the sensitivity of assays with plants in the risk assessment of contaminated soils? PLoS ONE 8(4):e59748CrossRefGoogle Scholar
  38. George B, You D, Joy MS, Aleksunes LM (2017) Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 116:73–91CrossRefGoogle Scholar
  39. Gomes HI, Ottosen LM, Ribeiro AB, Ferreira CD (2015) Treatment of a suspension of pcb contaminated soil using iron nanoparticles and electric current. J Environ Manage 151:550–555CrossRefGoogle Scholar
  40. Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Br J Plant Physiol 17(1):53–64CrossRefGoogle Scholar
  41. Hamidat M, Barakat M, Ortet P, Chaneac C, Rose J, Bottero JY, Heulin T, Achouak W, Santaella C (2016) Design defines the effects of nanoceria at a low dose on soil microbiota and the potentiation of impacts by the canola plant. Environ Sci Technol 50:6892–6901CrossRefGoogle Scholar
  42. Han B, Zhang M, Zhao D (2017) In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: column studies. Environ Pollut 223:238–246CrossRefGoogle Scholar
  43. Hess G (2014) Air pollution rule revived. Chem Eng News Arch 92(18):6Google Scholar
  44. Hinch N (1969) Air pollution. J Chem Educ 46(2):93–95CrossRefGoogle Scholar
  45. Hu Z, Beuret M, Khan H, Ariya AP (2014) Development of recyclable remediation system for gaseous BTEX: combination of iron oxides nanoparticles adsorbents and electrochemistry. ACS Sustain Chem Eng 2:2739–2747CrossRefGoogle Scholar
  46. Huang B, Xiao L, Yang LY, Ji R, Miao AJ (2016) Facile synthesis of 55Fe-labeled well-dispersible hematite nanoparticles for bioaccumulation studies in nanotoxicology. Environ Pollut 213:801–808CrossRefGoogle Scholar
  47. Hughes DL, Afsar A, Laventine DM, Shaw EJ, Harwood LM, Hodson ME (2018) Metal removal from soil leachates using DTPA-functionalised maghemite nanoparticles, a potential soil washing technology. Chemosphere 209:480–488CrossRefGoogle Scholar
  48. Ibrahim AA, Kumar R, Umar A, Kim SH, Bumajdad A, Ansari AA, Baskoutas S (2016) Cauliflower-shaped ZnO nanomaterials for electrochemical sensing and photocatalytic applications. Electrochim Acta 222:463–472CrossRefGoogle Scholar
  49. Imagawa H, Sun S (2012) Controlled synthesis of monodisperse CeO2 nanoplates developed from assembled nanoparticles. J Phys Chem C 116(4):2761–2765CrossRefGoogle Scholar
  50. Jiang X, Lu W, Hou Z, Zhao H, Na J (2015) Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites. Comput Geosci 84:37–45CrossRefGoogle Scholar
  51. Jorfi S, Maleki R, Jaafarzadeh N, Ahmadi M (2017) Pollution load index for heavy metals in Mian-Ab Plain soil, Khuzestan, Iran. Data Br 15:584–590CrossRefGoogle Scholar
  52. Kadu BS, Wani KD, Kaul-Ghanekar R, Chikate RC (2017) Degradation of doxorubicin to non-toxic metabolites using Fe–Ni bimetallic nanoparticles. Chem Eng J 325:715–724CrossRefGoogle Scholar
  53. Kansara K, Patel P, Shukla RK, Pandya A, Shanker R, Kumar A, Dhawan A (2018) Synthesis of biocompatible iron oxide nanoparticles as a drug delivery vehicle. Int J Nanomed 13:79–82CrossRefGoogle Scholar
  54. Kaur Y, Bhatia Y, Chaudhary S, Chaudhary GR (2017) Comparative performance of bare and functionalize ZnO nanoadsorbents for pesticide removal from aqueous solution. J Mol Liq 234:94–103CrossRefGoogle Scholar
  55. KhaliliFard J, Jafari S, Eghbal MAA (2015) Review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5(4):447–454CrossRefGoogle Scholar
  56. Kim HT, Kim C, Kim CD, Sohn SY (2017a) Effects of growth temperature on pyrite (FeS2) nanoparticles structural and optical properties. J Nanoelectron Optoelectron 12:594–597CrossRefGoogle Scholar
  57. Kim JW, Ki CS, Um IC, Park YHA (2017b) Facile fabrication method and the boosted adsorption and photodegradation activity of CuO nanoparticles synthesized using a silk fibroin template. J Ind Eng Chem 56:335–341CrossRefGoogle Scholar
  58. Klotz LO, Steinbrenner H (2017) Cellular adaptation to xenobiotics: interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biol 13:646–654CrossRefGoogle Scholar
  59. Kumar B, Jalodia K, Kumar P, Gautam HK (2017a) Recent advances in nanoparticle-mediated drug delivery. J Drug Deliv Sci Technol 41:260–268CrossRefGoogle Scholar
  60. Kumar SK, Jiang SJ, Warchol JK (2017b) Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III). ACS Omega 2:6187–6200CrossRefGoogle Scholar
  61. Lago AD, Seijo AR, Vila ML, Couce A, Vega FA (2016) Using Ca3(PO4)2 nanoparticles to reduce metal mobility in shooting range soils. Sci Total Environ 571:1136–1146CrossRefGoogle Scholar
  62. Lee SH (2017) Magnetic characteristics of YBaCuO superconductor fabricated by melting process. J Nanoelectron Optoelectron 12:1013–1017CrossRefGoogle Scholar
  63. Li J, Zhou N, Song J, Fu L, Yan J, Tang Y, Wang H (2018a) Cu-MOF derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of ketjenblack carbon in Al-air battery. ACS Sustain Chem Eng 6:413–421CrossRefGoogle Scholar
  64. Li X, Liu Y, Zhang C, Wen T, Zhuang L, Wang X, Song G, Chen D, Ai Y, Hayat T (2018b) Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal Ions. Chem Eng J 336:241–252CrossRefGoogle Scholar
  65. Lian G, Zhang X, Si H, Wang J, Cui D, Wang Q (2013) Boron nitride ultrathin fibrous nanonets: one-step synthesis and applications for ultrafast adsorption for water treatment and selective filtration of nanoparticles. ACS Appl Mater Interfaces 5:12773–12778CrossRefGoogle Scholar
  66. Liu H, Su X, Duan C, Dong X, Zhou S, Zhu Z (2014) Microwave-assisted hydrothermal synthesis of Au NPs-graphene composites for H2O2 detection. J Electroanal Chem 731:36–42CrossRefGoogle Scholar
  67. Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219CrossRefGoogle Scholar
  68. Liu G, Wang S, Gondal MA, Shen K, Xu Q (2019) Enhanced visible light photocatalytic performance of G-C3N4 photocatalysts Co-doped with gold and sulfur for degradation of persistent pollutant (Rhodamine B). J Nanosci Nanotechnol 19:713–720CrossRefGoogle Scholar
  69. Lv H, Su X, Wang Y, Dai Z, Liu M (2018) Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site. Chemosphere 206:293–301CrossRefGoogle Scholar
  70. Ma F, Wu B, Zhang Q, Cui D, Liu Q, Peng C, Li F, Gu Q (2018) An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil. J Hazard Mater 344:742–748CrossRefGoogle Scholar
  71. Majhi SM, Naik GK, Lee HJ, Song HG, Lee CR, Lee IH, Yu YT (2018) Au@NiO Core-shell nanoparticles as a P-type gas sensor: novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sens Actuator B Chem 268:223–231CrossRefGoogle Scholar
  72. Marisa I, Matozzo V, Martucci A, Franceschinis E, Brianese N, Marin MG (2018) Bioaccumulation and effects of titanium dioxide nanoparticles and bulk in the clam Ruditapes philippinarum. Mar Environ Res 136:179–189CrossRefGoogle Scholar
  73. Mikelonis AM, Lawler DF, Passalacqua P (2016) Multilevel modeling of retention and disinfection efficacy of silver nanoparticles on ceramic water filters. Sci Total Environ 566–567:368–377CrossRefGoogle Scholar
  74. Minet EP, Jahangir MMR, Krol DJ, Rochford N, Fenton O, Rooney D, Lanigan G, Forrestal PJ, Breslin C, Richards KG (2016) Amendment of cattle slurry with the nitrification inhibitor dicyandiamide during storage: a new effective and practical N2O mitigation measure for landspreading. Agric Ecosyst Environ 215:68–75CrossRefGoogle Scholar
  75. Miyazaki H, Kato JI, Sakamoto N, Wakiya N, Ota T, Suzuki H (2010) Synthesis of CeO2 nanoparticles by rapid thermal decomposition using microwave heating. Adv Appl Ceram 109(2):123–127CrossRefGoogle Scholar
  76. Morey GW (1953) Hydrothermal synthesis. J Am Ceram Soc 36(9):279–285CrossRefGoogle Scholar
  77. Nobles CJ, Schisterman EF, Ha S, Kim K, Mumford SL, Buck Louis GM, Chen Z, Liu D, Sherman S, Mendola P (2018) Ambient air pollution and semen quality. Environ Res 163:228–236CrossRefGoogle Scholar
  78. Nouri H, Chavoshi Borujeni S, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Saf Environ Prot 107:94–107CrossRefGoogle Scholar
  79. Oberdörster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102:173–179Google Scholar
  80. Ojewumi ME, Okeniyi JO, Ikotun JO, Okeniyi ET, Ejemen VA, Popoola API (2018) Bioremediation: data on pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil. Data Br 19:101–113CrossRefGoogle Scholar
  81. Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Bioresour Technol 246:110–122CrossRefGoogle Scholar
  82. Patra S, Roy E, Madhuri R, Sharma PK (2015) Fast and selective preconcentration of Europium from wastewater and coal soil by graphene oxide/silane@Fe3O4 dendritic nanostructure. Environ Sci Technol 49:6117–6126CrossRefGoogle Scholar
  83. Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J (2017) Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants. Environ Sci Technol 51:4907–4917CrossRefGoogle Scholar
  84. Perrotta ML, Saielli G, Casella G, Macedonio F, Giorno L, Drioli E, Gugliuzza A (2017) An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. Appl Mater Today 9:1–9CrossRefGoogle Scholar
  85. Pourgolmohammad B, Masoudpanah SM, Aboutalebi MR (2017) Effects of the fuel type and fuel content on the specific surface area and magnetic properties of solution combusted CoFe2O4 nanoparticles. Ceram Int 43(11):8262–8268CrossRefGoogle Scholar
  86. Qian Y, Zhang J, Zhang Y, Chen J, Zhou X (2016) Degradation of 2,4-dichlorophenol by nanoscale calcium peroxide: implication for groundwater remediation. Sep Purif Technol 166:222–229CrossRefGoogle Scholar
  87. Qu C, Shi W, Guo J, Fang B, Wang S, Giesy JP, Holm PE (2016) China’s soil pollution control: choices and challenges. Environ Sci Technol 50(24):13181–13183CrossRefGoogle Scholar
  88. Qu X, Yang R, Tong F, Zhao Y, Wang MH (2018) Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties. Powder Technol 330:259–265CrossRefGoogle Scholar
  89. Rai PK, Lee J, Kailasa SK, Kwon EE, Tsang YF, Ok YS, Kim KH (2018) A critical review of ferrate(VI)-based remediation of soil and groundwater. Environ Res 160:420–448CrossRefGoogle Scholar
  90. Rajendran K, Sen S (2018) Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles. Environ Nanotechnol Monit Manag 9:122–127Google Scholar
  91. Real AEP, Michel HC, Kaegi R, Sinnet B, Magnin V, Findling N, Villanova J, Carrière M, Santaella C, Martı́nez AF (2016) Fate of Ag–NPs in sewage sludge after application on agricultural soils. Environ Sci Technol 50(4):1759–1768CrossRefGoogle Scholar
  92. Ren T, Yang M, Wang K, Zhang Y, He J (2018) Cuo Nanoparticlescontaining highly transparent and superhydrophobic coating with extremely low bacterial adhesion and excellent bactericidal property. ACS Appl Mater Interfaces 10:25717–25725CrossRefGoogle Scholar
  93. Roby MC, SalasFernandez MG, Heaton EA, Miguez FE, VanLoocke A (2017) Biomass sorghum and maize have similar water-use-efficiency under non-drought conditions in the rain-fed midwest. USA Agric For Meteorol 247:434–444CrossRefGoogle Scholar
  94. Rocco C, Duro I, DiRosa S, Fagnano M, Fiorentino N, Vetromile A, Adamo P (2016) Composite versus discrete soil sampling in assessing soil pollution of agricultural sites affected by solid waste disposal. J Geochem Explor 170:30–38CrossRefGoogle Scholar
  95. Rosen AA (1967) Water pollution. Anal Chem 39(12):26–33CrossRefGoogle Scholar
  96. Schulman JH, Stoekenius W, Prince LM (1959) Mechanism of formation and structure of microemulsions by electron microscopy. J Phys Chem 63:1677–1680CrossRefGoogle Scholar
  97. Sharma P, Rohilla D, Chaudhary S, Kumar R, Singh AN (2019) Nanosorbent of hydroxyapatite for atrazine: a new approach for combating agricultural runoff. Sci Total Environ 663:264–273CrossRefGoogle Scholar
  98. Shi X, Tian A, You J, Yang H, Wang Y, Xue X (2018) Degradation of organic dyes by a new heterogeneous fenton reagent—Fe2GeS4 nanoparticle. J Hazard Mater 353:182–189CrossRefGoogle Scholar
  99. Simelane S, Ngila JC, Dlamini LN (2017) The Fate, behaviour and effect of WO3 nanoparticles on the functionality of an aerobic treatment unit. Environ Nanotechnol Monit Manag 8:199–208Google Scholar
  100. Singh Vig A, Gupta A, Pandey OP (2018) Efficient photodegradation of methylene blue (MB) under solar radiation by ZrC nanoparticles. Adv Powder Technol 29(9):2231–2242CrossRefGoogle Scholar
  101. Singh V, Tiwari A, Das M (2016) Phyco-remediation of industrial waste-water and flue gases with algal-diesel engenderment from micro-algae: a review. Fuel 173:90–97CrossRefGoogle Scholar
  102. Singh N, Umar A, Singh N, Fouad H, Alothman OY, Haque FZ (2018) Highly sensitive optical ammonia gas sensor based on Sn doped V2O5 nanoparticles. Mater Res Bull 108:266–274CrossRefGoogle Scholar
  103. Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(1):13–21CrossRefGoogle Scholar
  104. Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D (2016) Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. J Hazard Mater 318:533–540CrossRefGoogle Scholar
  105. Su Y, Zhang Y, Ke H, McPherson G, He J, Zhang X, John VT (2017) Biopolymer stabilized iron loaded halloysite nanotubes. ACS Sustain Chem Eng 5:10976–10985CrossRefGoogle Scholar
  106. Suematsu K, Shin Y, Ma N, Oyama T, Sasaki M, Yuasa M, Kida T, Shimanoe K (2015) Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles. Anal Chem 87(16):8407–8415CrossRefGoogle Scholar
  107. Thomas VJ, Ramaswamy S (2016) Application of graphene and graphene compounds for environmental remediation. Sci Adv Mater 8(3):477–500CrossRefGoogle Scholar
  108. Umar A, Alshahrani AA, Algarni H, Kumar R (2017) CuO nanosheets as potential scaffolds for sensing applications. Sens Actuator B Chem 250:24–31CrossRefGoogle Scholar
  109. Umar A, Akhtar MS, Assiri MS, Al-Salami AE, Kim SH (2018) Composite CdO-ZnO hexagonal nanocones: efficient materials for photovoltaic and sensing applications. Ceram Int 44(5):5017–5024CrossRefGoogle Scholar
  110. Valente F, Bysell H, Simoni E, Boge L, Eriksson M, Martini A, Astolfi L (2018) Evaluation of toxicity of glycerol monooleate nanoparticles on PC12 cell line. Int J Pharm 539(1–2):23–30CrossRefGoogle Scholar
  111. Van Koetsem F, Woldetsadik GS, Folens K, Rinklebe J, Du Laing G (2018) Partitioning of Ag and CeO2 nanoparticles versus Ag and Ce ions in soil suspensions and effect of natural organic matter on CeO2 nanoparticles stability. Chemosphere 200:471–480CrossRefGoogle Scholar
  112. Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517CrossRefGoogle Scholar
  113. Wang S, Zhao X, Yin X, Yu J, Ding B (2016) Electret ployvinylidene fluoride nanofibers hybridized ploytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl Mater Interfaces 8:23985–23994CrossRefGoogle Scholar
  114. Wang X, Zhang D, Pan X, Lee DJ, Al-Misned FA, Mortuza MG, Gadd GM (2017a) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273CrossRefGoogle Scholar
  115. Wang S, Liu Z, Wang W, You H (2017b) Fate and transformation of nanoparticles (NPs) in municipal wastewater treatment systems and effects of NPs on the biological treatment of wastewater: a review. RSC Adv 7(59):37065–37075CrossRefGoogle Scholar
  116. Weerasinghe A, Ariyawnasa S, Weerasooriya R (2008) Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation. Chemosphere 70(3):521–524CrossRefGoogle Scholar
  117. Wilberforce T, El-Hassan Z, Khatib FN, Al Makky A, Baroutaji A, Carton JG, Olabi AG (2017) Developments of electric cars and fuel cell hydrogen electric cars. Int J Hydrogen Energy 42(40):25695–25734CrossRefGoogle Scholar
  118. Wilkinson EK, Palmberg L, Witasp E, Kupczyk M, Feliu N, Gerde P, Seisenbaeva AG, Fadeel B, Dahlen ES, Kessler GV (2011) Solution-engineered palladium nanoparticles: model for health effect studies of automotive particular pollution. ACS Nano 5:5312–5324CrossRefGoogle Scholar
  119. Wooding M, Rohwer ER, Naudé Y (2017) Comparison of a disposable sorptive sampler with thermal desorption in a gas chromatographic inlet, or in a dedicated thermal desorber, to conventional stir bar sorptive extraction-thermal desorption for the determination of micropollutants in water. Anal Chim Acta 984:107–115CrossRefGoogle Scholar
  120. Xiao P, Kim JH, Seo S (2017) Simple fabrication of highly sensitive photodetectors using MoS2 nanoparticles and Ag nanowires. Sci Adv Mater 9:1626–1630CrossRefGoogle Scholar
  121. Xie W, Liang Q, Qian T, Zhao D (2015) Immobilization of selenite in soil and groundwater using stabilized Fe–Mn binary oxide nanoparticles. Water Res 70:485–494CrossRefGoogle Scholar
  122. Yang Z, Fang Z, Zheng L, Cheng W, Tsang PE, Fang J, Zhao D (2016) Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicol Environ Saf 132:224–230CrossRefGoogle Scholar
  123. Yu K, Sheng GD, McCall W (2016) Cosovalent effects on dechlorination of soil sorbed polychlorinated biphenyls using bentonite clay-templated nanoscale zero valent iron. Environ Sci Technol 50:12949–12956CrossRefGoogle Scholar
  124. Zha J, Huang Y, Xia W, Xia Z, Liu C, Dong L, Liu L (2018) Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration. Fuel 229:241–247CrossRefGoogle Scholar
  125. Zhai X, Li Z, Huang B, Luo N, Huang M, Zhang Q, Zeng G (2018a) Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci Total Environ 635:92–99CrossRefGoogle Scholar
  126. Zhai P, Chen X, Zhang Z, Zhu L, Zhang H, Zhu W (2018b) Facile room-temperature coprecipitation of uniform barium chlorapatite nanoassemblies as a host photoluminescent material. Particuology 37:37–42CrossRefGoogle Scholar
  127. Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B (2016) Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. J Am Chem Soc 138:5785–5788CrossRefGoogle Scholar
  128. Zhao R, Li K, Wang Z, Xing X, Wang Y (2018) Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gas. J Phys Chem Solids 112:43–49CrossRefGoogle Scholar
  129. Zhu J, Liu P (2017) Chitosan modified by polyacrylamide for adsorptive removal of tetracycline from wate water. J Nanoelectron Optoelectron 12:1186–1190CrossRefGoogle Scholar
  130. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation and accumulation of manufactured iron oxide NPs by pumpkin plants. J Environ Monit 10:713–717CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  • S. Chaudhary
    • 1
    Email author
  • P. Sharma
    • 2
  • P. Chauhan
    • 1
  • R. Kumar
    • 2
  • A. Umar
    • 3
  1. 1.Department of Chemistry and Centre of Advanced Studies in ChemistryPanjab UniversityChandigarhIndia
  2. 2.Department of Environment StudiesPanjab UniversityChandigarhIndia
  3. 3.Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED)Najran UniversityNajranSaudi Arabia

Personalised recommendations