Advertisement

Removal of hexadecane by hydroponic root mats in partnership with alkane-degrading bacteria: bacterial augmentation enhances system’s performance

  • F. Hussain
  • R. Tahseen
  • M. ArslanEmail author
  • S. Iqbal
  • M. Afzal
Original Paper

Abstract

In this study, degradation of hexadecane was investigated in the contaminated water by employing plant–bacteria partnership in hydroponic root mat system. A halophyte grass, Leptochloa fusca, was planted in the presence of three hydrocarbons-degrading bacteria, namely Acinetobacter sp. ACRH82, Acinetobacter sp. BRRH61, and Bacillus niabensis ACSI85. The strains were screened based on their in vitro potential of hexadecane degradation as well as plant growth-promoting activities. Hydroponic systems containing vegetation or bacterial consortium separately attenuated a good proportion of hydrocarbons, chemical oxygen demand, biochemical oxygen demand, and total dissolved solids. Nevertheless, combined application of vegetation and bacteria significantly enhanced the system performance; i.e., hydrocarbons degradation was recorded up to 92%, chemical oxygen demand was reduced up to 95%, biochemical oxygen demand up to 84%, and total dissolved solids up to 47%. The inoculated bacteria displayed highest persistence in the roots followed by shoots and then in the wastewater. The biotoxicity assay revealed that hydroponic root mat containing plant–bacteria partnership was highly efficient in reducing the toxicity level. Conclusively, the present study implies that application of L. fusca in partnership with the hydrocarbon-degrading bacteria in hydroponic root mat is a suitable choice for the phytoremediation of hexadecane. Similar systems may be exploited for the enhanced degradation of other long-chain saturated alkanes from oil-contaminated wastewaters.

Keywords

Alkane degradation Long-chain n-alkanes Hexadecane Leptochloa fusca Plant–bacteria partnership 

Notes

Acknowledgements

Authors are thankful to the Higher Education Commission (HEC) of Pakistan for the financial Grant: 20-3854.

Supplementary material

13762_2018_2165_MOESM1_ESM.xlsx (15 kb)
Supplementary material 1 (XLSX 14 kb)
13762_2018_2165_MOESM2_ESM.xlsx (15 kb)
Supplementary material 2 (XLSX 14 kb)
13762_2018_2165_MOESM3_ESM.xlsx (15 kb)
Supplementary material 3 (XLSX 14 kb)
13762_2018_2165_MOESM4_ESM.xlsx (13 kb)
Supplementary material 4 (XLSX 12 kb)
13762_2018_2165_MOESM5_ESM.xlsx (17 kb)
Supplementary material 5 (XLSX 17 kb)
13762_2018_2165_MOESM6_ESM.xlsx (16 kb)
Supplementary material 6 (XLSX 16 kb)
13762_2018_2165_MOESM7_ESM.docx (392 kb)
Supplementary material 7 (DOCX 391 kb)
13762_2018_2165_MOESM8_ESM.xlsx (9 kb)
Supplementary material 8 (XLSX 8 kb)

References

  1. Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242CrossRefGoogle Scholar
  2. Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Gen Eng Biotechnol 13(1):51–58CrossRefGoogle Scholar
  3. Arslan M, Afzal M, Amin I, Iqbal S, Khan QM (2014) Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil. PLoS ONE 9(10):e111208CrossRefGoogle Scholar
  4. Arslan M, Ullah I, Müller JA, Shahid N, Afzal M (2017) Organic micropollutants in the environment: ecotoxicity potential and methods for remediation. In: Anjum N, Gill S, Tuteja N (eds) Enhancing cleanup of environmental pollutants. Springer, ChamGoogle Scholar
  5. Ashraf S, Afzal M, Naveed M, Shahid M, Zahir ZA (2018) Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int J Phytoremediation 20(2):121–128CrossRefGoogle Scholar
  6. Baldi F, Ivosevi N, Minacci A, Pepi M, Fani R, Svetlici V, Zuti V (1999) Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65(5):2041–2048Google Scholar
  7. Chen Z, Cuervo DP, Müller JA, Wiessner A, Köser H, Vymazal J, Kästner M, Kuschk P (2016) Hydroponic root mats for wastewater treatment. Environ Sci Pollut Res 23(16):15911–15928CrossRefGoogle Scholar
  8. Cole GM (2018) Assessment and remediation of petroleum contaminated sites. Routledge, AbingdonCrossRefGoogle Scholar
  9. Eastcott L, Shiu WY, Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pol 4(3):191–216CrossRefGoogle Scholar
  10. Fatima K, Afzal M, Imran A, Khan QM (2015) Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contam Toxicol 94(3):314–320CrossRefGoogle Scholar
  11. Fatima K, Imran A, Amin I, Khan QM, Afzal M (2018) Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int J Phytoremediat 20(7):675–681CrossRefGoogle Scholar
  12. Geerdink MJ, van Loosdrecht MC, Luyben KCA (1996) Model for microbial degradation of nonpolar organic contaminants in a soil slurry reactor. Environ Sci Technol 30(3):779–786CrossRefGoogle Scholar
  13. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393CrossRefGoogle Scholar
  14. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374CrossRefGoogle Scholar
  15. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39CrossRefGoogle Scholar
  16. Gohl O, Friedrich A, Hoppert M, Averhoff B (2006) The thin pili of Acinetobacter sp. strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl Environ Microbiol 72(2):1394–1401CrossRefGoogle Scholar
  17. Hasanuzzaman M, Ueno A, Ito H, Ito Y, Yamamoto Y, Yumoto I, Okuyama H (2007) Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG. Int Biodeterior Biodegrad 59(1):40–43CrossRefGoogle Scholar
  18. Hashmat AJ, Islam E, Haq MAU, Khan QM (2016) Integrated treatment technology for textile effluent and its phytotoxic evaluation. Desalin Water Treat 57(9):4146–4153CrossRefGoogle Scholar
  19. Hori K, Watanabe H, Si Ishii, Tanji Y, Unno H (2008) Monolayer adsorption of a “bald” mutant of the highly adhesive and hydrophobic bacterium Acinetobacter sp. strain Tol 5 to a hydrocarbon surface. Appl Environ Microbiol 74(8):2511–2517CrossRefGoogle Scholar
  20. Kang YS, Park W (2010) Contribution of quorum-sensing system to hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1. J Appl Microbiol 109(5):1650–1659Google Scholar
  21. Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(4):1317–1332CrossRefGoogle Scholar
  22. Kisic I, Mesic S, Basic F, Brkic V, Mesic M, Durn G, Zgorelec Z, Bertovic L (2009) The effect of drilling fluids and crude oil on some chemical characteristics of soil and crops. Geoderma 149(3–4):209–216CrossRefGoogle Scholar
  23. Ollis D (1992) Slick solution for oil spills. Nature 6386:453–454CrossRefGoogle Scholar
  24. Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92(6):659–666CrossRefGoogle Scholar
  25. Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FC, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90(2):521–526CrossRefGoogle Scholar
  26. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149CrossRefGoogle Scholar
  27. Rehman K, Imran A, Amin I, Afzal M (2018) Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J Hazard Mater 349:242–251CrossRefGoogle Scholar
  28. Rehman K, Imran A, Amin A, Afzal M (2019) Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere 217:576–583CrossRefGoogle Scholar
  29. Sakai Y, Maeng HJ, Tani Y, Kato N (1994) Use of long-chain n-alkanes (C13-C44) by an isolate, Acinetobacter sp. M-1. Biosci Biotechnol Biochem 58(11):2128–2130CrossRefGoogle Scholar
  30. Salam LB, Obayori OS, Akashoro OS, Okogie GO (2011) Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil. Int J Agric Biol 13:245–250Google Scholar
  31. Saleem H, Arslan M, Rehman K, Tahseen R, Afzal M (2018a) Phragmites australis—a helophytic grass—can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi J Biol Sci.  https://doi.org/10.1016/j.sjbs.2018.01.014 CrossRefGoogle Scholar
  32. Saleem H, Rehman K, Arslan M, Afzal M (2018b) Enhanced degradation of phenol in floating treatment wetlands by plant-bacterial synergism. Int J Phytoremediation 20(7):692–698CrossRefGoogle Scholar
  33. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194CrossRefGoogle Scholar
  34. Shabir G, Arslan M, Fatima K, Imran A, Khan QM, Afzal M (2016) Effects of inoculum density on plant growth and hydrocarbon degradation. Pedosphere 26(5):774–778CrossRefGoogle Scholar
  35. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222Google Scholar
  36. Silva-Castro GA, Rodelas B, Perucha C, Laguna J, González-López J, Calvo C (2013) Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant. Sci Total Environ 445:347–355CrossRefGoogle Scholar
  37. Sticher P, Jaspers M, Stemmler K, Harms H, Zehnder A, Van Der Meer JR (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63(10):4053–4060Google Scholar
  38. Stroud J, Paton G, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102(5):1239–1253CrossRefGoogle Scholar
  39. Syranidou E, Christofilopoulos S, Kalogerakis N (2017) Juncus spp.—the helophyte for all (phyto) remediation purposes? New Biotechnol 38:43–55CrossRefGoogle Scholar
  40. Tabassum S, Shahid N, Wang J, Shafiq M, Mumtaz M, Arslan M (2016) The oxidative stress response of Mirabilis jalapa to exhausted engine oil (EEO) during phytoremediation. Pol J Environ Stud 25(6):2581–2587CrossRefGoogle Scholar
  41. Tara N, Iqbal M, Khan QM, Afzal M (2018) Bioaugmentation of floating treatment wetlands for the remediation of textile effluent. Water Environ J.  https://doi.org/10.1111/wej.12383 CrossRefGoogle Scholar
  42. Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73(10):3327–3332CrossRefGoogle Scholar
  43. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability. Molecules 21(5):573–581CrossRefGoogle Scholar
  44. Vymazal J (2013) The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res 47(14):4795–4811CrossRefGoogle Scholar
  45. Wang L, Tang Y, Wang S, Liu R-L, Liu M-Z, Zhang Y, Liang F-L, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10(4):347–352CrossRefGoogle Scholar
  46. Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76(6):1209–1221CrossRefGoogle Scholar
  47. Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a Psychrotrophic rhodococcussp. Appl Environ Microbiol 64(7):2578–2584Google Scholar
  48. Yousaf S, Ripka K, Reichenauer T, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109(4):1389–1401CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  • F. Hussain
    • 1
  • R. Tahseen
    • 1
  • M. Arslan
    • 1
    • 2
    Email author
  • S. Iqbal
    • 1
  • M. Afzal
    • 1
  1. 1.Soil and Environmental Biotechnology DivisionNational Institute for Biotechnology and Genetic Engineering (NIBGE)FaisalabadPakistan
  2. 2.Environmental Biotechnology DivisionHelmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations