Advertisement

Relationship among physicochemical conditions, chlorophyll-a concentration, and water level in a tropical river–floodplain system

  • A. K. Cruz-Ramírez
  • M. Á. SalcedoEmail author
  • A. J. Sánchez
  • E. Barba Macías
  • J. D. Mendoza Palacios
Short Communication

Abstract

The free-flowing Usumacinta River maintains an average annual water-level fluctuation of 6.7 m. This study evaluated relationships between 14 physicochemical and biological variables and key factors in four water-level conditions in a river–floodplain system. The analysis incorporated intra-annual variation in all variables, with each selected in accordance with multiple statistical and physicochemical criteria. Possible correlations were examined as a function of various physicochemical and biological factors at each water level. Within the study area, defined by a temporal gradient in principal component 1, the yearly river overflow above the bankfull stage is characterized by water with a low level of total suspended solids. Data on riverine wetlands suggest that seasonal changes are key to determining intra- and inter-annual chlorophyll-a levels and water clarity. However, opposite trends are observed for high and low water-level conditions. Nutrient enrichment cannot be taken as the key physicochemical factor of water level, under either water-level conditions, due to the lack of a temporal gradient in principal component 2 and the high biochemical variability of nitrate and orthophosphate levels. In conclusion, the hypothesis was accepted for the production of phytoplankton biomass and light attenuation at low and high water levels, as both were dependent on intra-annual changes. The increases in chlorophyll-a related to the minimal variability at the lowest water level open the opportunity to gauge this relationship as a possible environmental predictor for river–floodplain systems.

Keywords

Inorganic nutrients Intra-annual variation Lateral connectivity Physicochemical processes Usumacinta basin 

Notes

Acknowledgements

The Consejo Nacional de Ciencia y Tecnología (CONACYT) and Tabasco State Government funded the research project with Grant Number TAB-2012-C-28-194316. Authors belong to RECORECOS net research. First author received a doctoral scholarship from CONACyT.

Compliance with ethical standards

Conflict of interest

The authors declare that have no conflict of interest.

Supplementary material

13762_2018_2127_MOESM1_ESM.pdf (83 kb)
Supplementary material 1 (PDF 83 kb)

References

  1. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, WashingtonGoogle Scholar
  2. Barba-Macías E, Trinidad-Ocaña C (2017) New records of the exotic Asian clam Corbicula fluminea (Bivalvia: Veneroida: Cyrenidae) in wetlands of Papaloapan, Grijalva and Usumacinta basins. Rev Mex Biodivers 88:450–453.  https://doi.org/10.1016/j.rmb.2016.10.021 CrossRefGoogle Scholar
  3. Barba-Macías E, Carmona-Osalde C, Quiñones-Rodríguez L, Rodríguez-Serna M (2015) New records of cambarids (Crustacea: Cambaridae: Procambarus) from Grijalva–Usumacinta Basin, Tabasco. Rev Mex Biodivers 86:620–628.  https://doi.org/10.1016/j.rmb.2015.04.036 CrossRefGoogle Scholar
  4. Brito JGD, Alves LF, Espirito Santo HMV (2014) Seasonal and spatial variations in limnological conditions of a floodplain lake (lake Catalão) connected to both the Solimões and Negro Rivers, Central Amazonia. Acta Amazon 44(1):121–133.  https://doi.org/10.1590/S0044-5967201400010001 CrossRefGoogle Scholar
  5. CONAGUA (2011) Identificación de reservas potenciales de agua para el medio ambiente en México. Secretaría del Medio Ambiente y Recursos Naturales, Ciudad de MéxicoGoogle Scholar
  6. de Souza BIL, Mannaerts CM, Fonseca SAC (2017) Seasonal variation of phytoplankton indicates small impacts of anthropic activities in a Brazilian Amazonian reserve. Ecohydrol Hydrobiol 17:217–226.  https://doi.org/10.1016/j.ecohyd.2017.04.001 CrossRefGoogle Scholar
  7. de Wilde M, Puijalon S, Vallier F, Bornette G (2015) Physico-chemical consequences of water-level decreases in wetlands. Wetlands 35:683–694.  https://doi.org/10.1007/s13157-015-0658-y CrossRefGoogle Scholar
  8. Esqueda-Lara K, Sánchez AJ, Valdés-Lagunes G, Salcedo MA, Franco-Torres AE, Florido R (2016) Phytoplankton in the tropical wetland Chaschoc in the low watershed of the Usumacinta River. Rev Mex Biodivers 87:1177–1188.  https://doi.org/10.1016/j.rmb.2016.10.015 CrossRefGoogle Scholar
  9. Jeppesen E, Brucet S, Naselli-Flores L, Papastergiadou E, Stefanidis K, Nõges T, Nõges P, Attayde JL, Zohary T, Coppens J, Bucak T, Menezes RF, Freitas FRS, Kernan M, Søndergaard M, Beklioğlu M (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750:201–227.  https://doi.org/10.1007/s10750-014-2169-x CrossRefGoogle Scholar
  10. Junk WJ (2002) Long-term environmental trends and the future of tropical wetlands. Environ Conserv 29(4):414–435.  https://doi.org/10.1017/S0376892902000310 CrossRefGoogle Scholar
  11. Kolb M, Galicia L (2012) Challenging the linear forestation narrative in the neo-tropic: regional patterns and processes of deforestation and regeneration in southern Mexico. Geogr J 178(2):147–161.  https://doi.org/10.1111/j.1475-4959.2011.00431.x CrossRefGoogle Scholar
  12. Kraemer BM, Mehner T, Adrian R (2017) Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Sci Rep 7:10762.  https://doi.org/10.1038/s41598-017-11167-3 CrossRefGoogle Scholar
  13. Legendre P, Legendre L (2000) Numerical ecology. Elsevier Science, AmsterdamGoogle Scholar
  14. Liu X, Teubner K, Chen Y (2016) Water quality characteristics of Poyang Lake, China, in response to changes in the water level. Hydrol Res 47(S1):238–248.  https://doi.org/10.2166/nh.2016.209 CrossRefGoogle Scholar
  15. Macossay-Cortéz A, Sánchez AJ, Huidobro L, Florido R, Montalvo-Urgel H (2011) Historical and environmental distribution of ichthyofauna in the tropical wetland of Pantanos de Centla, southern Gulf of Mexico. Acta Ichthyol Piscat 41(3):229–245.  https://doi.org/10.3750/AIP2011.41.3.11 CrossRefGoogle Scholar
  16. Mayora G, Devercelli M, Giri F (2013) Spatial variability of chlorophyll-a and abiotic variables in a river–floodplain system during different hydrological phases. Hydrobiologia 717(1):51–63.  https://doi.org/10.1007/s10750-013-1566-x CrossRefGoogle Scholar
  17. Muñoz-Salinas E, Castillo M (2015) Streamflow and sediment load assessment from 1950 to 2006 in the Usumacinta and Grijalva Rivers (Southern Mexico) and the influence of ENSO. CATENA 127:270–278.  https://doi.org/10.1016/j.catena.2015.01.007 CrossRefGoogle Scholar
  18. OECD (1982) Eutrophication of waters. Monitoring, assessment and control. Organisation for Economic Co-operation and Development Publications and Information Center, WashingtonGoogle Scholar
  19. Palijan G (2017) Short-term response of the phytoplankton size structure to flooding. Inland Waters 7(2):192–199.  https://doi.org/10.1080/20442041.2017.1325591 CrossRefGoogle Scholar
  20. Peng F, Effler SW (2013) Light scattering and Secchi depth in an oligotrophic lake: insights from an individual particle analysis technique. Inland Waters 3:25–38.  https://doi.org/10.5268/IW-3.1.522 CrossRefGoogle Scholar
  21. Peralta PL, Moreno-Casasola P, López RH (2014) Hydrophyte composition of dune lakes and its relationship to land-use and water physicochemistry in Veracruz, Mexico. Mar Freshw Res 65:312–326.  https://doi.org/10.1071/MF12295 CrossRefGoogle Scholar
  22. Roach KA, Winemiller KO, Davis SE III (2014) Autochthonous production in shallow littoral zones of five floodplain rivers: effects of flow, turbidity and nutrients. Freshw Biol 59:1278–1293.  https://doi.org/10.1111/fwb.12347 CrossRefGoogle Scholar
  23. Sánchez AJ, Salcedo MA, Florido R, Mendoza JD, Ruiz-Carrera V, Álvarez-Pliego N (2015a) Ciclos de inundación y conservación de servicios ambientales en la cuenca baja de los ríos Grijalva–Usumacinta. ContactoS 97:5–14Google Scholar
  24. Sánchez AJ, Florido R, Álvarez-Pliego N, Salcedo MA (2015b) Distribution of Pterygoplichthys spp. (Siluriformes: Loricariidae) in the low basin of the Grijalva–Usumacinta rivers. Rev Mex Biodivers 86(4):1099–1102.  https://doi.org/10.1016/j.rmb.2015.06.016 CrossRefGoogle Scholar
  25. Shuhaimi-Othman M, Lim EC, Mushrifah LI (2007) Water quality changes in Chini Lake, Pahang, West Malaysia. Environ Monit Assess 131:279–292.  https://doi.org/10.1007/s10661-006-9475-3 CrossRefGoogle Scholar
  26. Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Process 14:2861–2883.  https://doi.org/10.1002/1099-1085(200011/12)14:16/17%3c2861:AID-HYP124%3e3.0.CO;2-F CrossRefGoogle Scholar
  27. Townsend SA (2006) Hydraulic phases, persistent stratification, and phytoplankton i a tropical floodplain lake (Mary River, northern Australia). Hydrobiologia 556:163–179.  https://doi.org/10.1007/s10750-005-0885-y CrossRefGoogle Scholar
  28. Tubatsi G, Bonyongo MC, Gondwe M (2014) Water quality dynamics in the Boro-Thamalakane-Boteti river system, northern Botswana. Afr J Aquat Sci 39(4):351–360.  https://doi.org/10.2989/16085914.2014.960791 CrossRefGoogle Scholar
  29. USEPA (1971) Oxygen dissolved (membrane electrode) method 360.1. United States Environmental Protection Agency, WashingtonGoogle Scholar
  30. Wang Y, Hu Y, Yang C, Chen Y (2018) Effects of vegetation types on water-extracted soil organic matter (WSOM) from riparian wetland and its impacts on riverine water quality: implications for riparian wetland management. Sci Total Environ 628–629:1249–1257.  https://doi.org/10.1016/j.scitotenv.2018.02.061 CrossRefGoogle Scholar
  31. Weilhoefer CL, Yangdong P, Eppard S (2008) The effects of river floodwaters on floodplain wetland water quality and diatom assemblages. Wetlands 28(2):473–486.  https://doi.org/10.1672/07-114.1 CrossRefGoogle Scholar
  32. Wetzel RG (2001) Limnology. Lake and river ecosystems. Elsevier Academic Press, San Diego.  https://doi.org/10.1016/C2009-0-02112-6 CrossRefGoogle Scholar
  33. Zalocar de Domitrovic Y (2003) Effects of fluctuations in water level on phytoplankton development in three lakes of the Paraná river floodplain (Argentina). Hydrobiologia 510:175–193.  https://doi.org/10.1023/B:HYDR.0000008643.50105.4b CrossRefGoogle Scholar
  34. Zhu QD, Sun JH, Hua GF, Wang JH, Wang H (2015) Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China. Environ Sci Pollut Res 22(19):15029–15036.  https://doi.org/10.1007/s11356-015-4709-y CrossRefGoogle Scholar
  35. Zuijdgeest A, Baumgartner S, Wehrli B (2016) Hysteresis effects in organic matter turnover in a tropical floodplain during a flood cycle. Biogeochemistry 131:49–63.  https://doi.org/10.1007/s10533-016-0263-z CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Doctorado en Ciencias en Ecología y Manejo de Sistemas Tropicales. División Académica de Ciencias BiológicasUniversidad Juárez Autónoma de TabascoVillahermosaMéxico
  2. 2.Diagnóstico y Manejo de Humedales Tropicales, División Académica de Ciencias BiológicasUniversidad Juárez Autónoma de TabascoVillahermosaMéxico
  3. 3.Manejo Sustentable de Cuencas y Zonas CosterasEl Colegio de la Frontera SurVillahermosaMéxico
  4. 4.Recursos Hídricos y Edáficos, División Académica de Ciencias AgropecuariasUniversidad Juárez Autónoma de TabascoVillahermosaMéxico

Personalised recommendations