Advertisement

Fate of the nanoparticles in environmental cycles

  • D. T. Donia
  • M. Carbone
Review
  • 82 Downloads

Abstract

Nanoparticles (NPs) are ubiquitous in everyday life. Due to their physicochemical, bespoken properties, they are currently exploited in a large amount of professional, recreational and daily-care items. Textiles, building materials, sunscreens, household cleaning products, agrochemical-specific biomolecules, tattoo inks are all sources of NPs. Inevitably the extended employment of NPs has an impact on the environment, which depends not only on their properties, but also on the method used for their disposal and on the physical and biochemical characteristics of the disposal location. These parameters eventually determine both the NPs bioaccumulation and their ecotoxicity. In this review, the environmental fate of the most commonly used NPs, i.e., Ag-NPs, ZnO-NPs and TiO2-NPs, are overviewed, taking into account the most up-to-date studies. Furthermore, the issues related to the trophic transfer and to the current nanomaterial regulations are reported.

Keywords

Nanoparticles Nanowaste stream Bioaccumulation Ecotoxicity Regulations 

Notes

Acknowledgements

The authors wish to thank R.J. Bakker, from CINECA—Rome, Italy, for helping with the graphical layout.

References

  1. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater 16:720654Google Scholar
  2. Adeleye AS, Keller AA (2016) Interactions between algal extracellular polymeric substances and commercial TiO2 nanoparticles in aqueous media. Environ Sci Technol 50:12258–12265Google Scholar
  3. Afshar E, Mohammadi-Manesh H, Dashti Khavidaki H (2017) Removal of Hg(I) and Hg(II) Ions from aqueous solutions, using TiO2 nanoparticles. Pollution 3:505–516Google Scholar
  4. Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Zezzi Arruda MA (2015) Nanoparticles applied to plant science: A review. Talanta 131:693–705Google Scholar
  5. Bahrami M, Amiri MJ, Koochaki S (2017) Removal of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies. Pollution 3:539–552Google Scholar
  6. Baker S, Volova T, Prudnikova SV, Satish S, Nagendra Prasad MN (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17Google Scholar
  7. Bao S, Wang H, Zhang W, Xie Z, Fang T (2016) An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments. Environ Pollut 219:696–704Google Scholar
  8. Batley GE, Kirby JK, Mc Laughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862Google Scholar
  9. Behjati M, Baghdadi M, Karbassi A (2018) Removal of mercury from contaminated saline wasters using dithiocarbamate functionalized-magnetic nanocomposite. J Environ Manag 213:66–78Google Scholar
  10. Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodríguez-Serrano F, Perán M, Melguizo C, Aranega A (2011) Nanomedicine: application areas and development prospects. Int J Mol Sci 12(5):3303–3321Google Scholar
  11. Bour A, Mouchet F, Silvestre J, Gauthiera L, Pinelli E (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 28:3764–3777Google Scholar
  12. Bourgeault A, Cousin C, Geertsen V, Cassier-Chauvat C, Chauvat F, Durupthy O, Chanéac C, Spalla O (2015) The challenge of studying TiO2 nanoparticle bioaccumulation at environmental concentrations: crucial use of a stable isotope tracer. Environ Sci Technol 49:2451–2459Google Scholar
  13. Caballero-Guzman A, Sun T, Nowack B (2015) Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Manag 36:33–43Google Scholar
  14. Cai Z, Sun Y, Liu W, Pan F, Sun P, Fu J (2017) An overview of nanomaterials applied for removing dyes from wastewater. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-017-9003-8 Google Scholar
  15. Carbone M (2016) Cu–Zn–Co nanosized mixed oxides prepared from hydroxycarbonate precursors. J Alloys Compd 688:202–209Google Scholar
  16. Carbone M (2018) Zn defective ZnCo2O4 nanorods as high capacity anode for lithium ion batteries. J Electroanal Chem 815:151–157Google Scholar
  17. Carbone M, Sabbatella G, Antonaroli S, Remita H, Orlando V, Biagioni S, Nucara A (2015) Exogenous control over intracellular acidification: enhancement via proton caged compounds coupled to gold nanoparticles. Biochim Biophys Acta Gener Subj 1850:2304–2307Google Scholar
  18. Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28(4):273–279Google Scholar
  19. Carbone M, Briancesco R, Bonadonna L (2017a) Antimicrobial power of Cu/Zn mixed oxide nanoparticles to Escherichia coli. Environ Nanotechnol Monit Manag 7:97–102Google Scholar
  20. Carbone M, Bauer EM, Micheli L, Missori M (2017b) NiO morphology dependent optical and electrochemical properties. Colloid Surf A Physicochem Eng 532:178–182Google Scholar
  21. Carbone M, Nesticò A, Bellucci N, Micheli L, Palleschi G (2017c) Enhanced performances of sensors based on screen printed electrodes modified with nanosized NiO particles. Electrochim Acta 246:580–587Google Scholar
  22. Cerrillo C, Barandika G, Igartua A, Areitioaurtena O, Mendoza G (2016) Towards the standardization of nanoecotoxicity testing: natural organic matter ‘camouflages’ the adverse effects of TiO2 and CeO2 nanoparticles on green microalgae. Sci Total Environ 543:95–104Google Scholar
  23. Chae Y, Kim SW, An YJ (2016) In vivo visual evaluation of nanoparticle transfer in a three-species terrestrial food chain. Chemosphere 15:1101–1107Google Scholar
  24. Chang J, Lee CW, Alsulimani HH, Choi JE, Lee JK, Kim A, Park BH, Kim J, Lee H (2016) Role of fatty acid composites in the toxicity of titanium dioxide nanoparticles used in cosmetic products. J Toxicol Sci 41(4):533–542Google Scholar
  25. Chen G, Liu X, Su C (2011) Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir 27:5393–5402Google Scholar
  26. Cox A, Venkatachalam P, Sahi S, Sharma N (2017) Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49Google Scholar
  27. Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017a) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225Google Scholar
  28. Du W, Gardea-Torresdey JL, Xie Y, Yin Y, Zhu J, Zhang X, Ji R, Gu K, Peralta-Videa JR, Guo H (2017b) Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Sci Total Environ 57:8408–8416Google Scholar
  29. Dubey S, Upadhyay SN, Sharma YC (2016) Optimization of removal of Cr by γ-alumina nano-adsorbent using response surface methodology. Ecol Eng 97:272–283Google Scholar
  30. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23Google Scholar
  31. Dulger M, Sakallioglu T, Temizel I, Demirel B, Copty NK, Onay TT, Uyguner-Demirel CS, Karanfil T (2016) Leaching potential of nano-scale titanium dioxide in fresh municipal solid waste. Chemosphere 144:1567–1572Google Scholar
  32. Durenkamp M, Pawlett M, Ritz K, Harris JA, Neal AL, McGrath SP (2016) Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environ Pollut 211:399–405Google Scholar
  33. El-Hady MM, Farouk A, Sharaf S (2013) Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydr Polym 92(1):400–406Google Scholar
  34. Ellis LJA, Valsami-Jones E, Lead JR, Baalousha M (2016) Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. Sci Total Environ 568:95–106Google Scholar
  35. EU-US (European Union-United states Communities of Research) (workshop October  2012). https://www.us-eu.org/
  36. Fage SW, Muris J, Jakobsen SS, Thyssen JP (2016) Titanium: a review on exposure release penetration allergy, epidemiology and clinical reactivity. Contact Dermat 74:323–345Google Scholar
  37. Falahati F, Baghdadi M, Aminzadeh B (2018) Treatment of dairy wastewater by graphene oxide nanoadsorbent and sludge separation, using In Situ Sludge Magnetic Impregnation (ISSMI). Pollution 4:29–41Google Scholar
  38. Fathi S, Kalantary RR, Rashidi A, Karbassi A (2016) Hexavalent chromium adsorption from aqueous solutions using nanoporous graphene/Fe3O4(NPG/Fe3O4: modeling and optimization). Desalin Water Treat 57(58):28284–28293Google Scholar
  39. Förster H, Thajudeen T, Funk C, Peukert W (2016) Separation of nanoparticles: filtration and scavenging from waste incineration plants. Waste Manag 52:346–352Google Scholar
  40. Fymat AL (2016) Recent developments in nanomedicine research. J Nanomed Res 7(4):00096Google Scholar
  41. Fymat AL (2017) On cancer electro- and nano-chemotherapy. J Cancer Prev Curr Res 7(2):(2)00232Google Scholar
  42. Garner KL, Suh S, Keller AA (2017) Assessing the risk of engineered nanomaterials in the environment: development and application of the nanofate model. Environ Sci Technol.  https://doi.org/10.1021/acs.est.6b05279 Google Scholar
  43. Ghafari B, Moniri E, Panahi HA, Karbassi A, Najafpour S (2017a) Efficient removal of Deltamethrin from polluted aquatic media by modified iron oxide magnetic nanoparticles. Desalin Water Treat 59:304–311Google Scholar
  44. Ghafari B, Moniri E, Panahi HA, Karbassi A, Najafpour S (2017b) Study on non-linear equilibrium, kinetics and thermodynamic of deltamethrin removal in aqueous solution using modified magnetic iron oxide nanoparticles. Water Sci Technol 76:847–858Google Scholar
  45. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155Google Scholar
  46. Grant CA, Twigg PC, Baker R, Tobin DJ (2015) Tattoo ink nanoparticles in skin tissue and fibroblasts. Beilstein J Nanotechnol 6:1183–1191Google Scholar
  47. Gunsolus IL, Mousavi MPS, Hussein K, Bühlmann P, Haynes CL (2015) Effects of humic and fulvic acids on silver nanoparticle stability dissolution and toxicity. Environ Sci Technol 49:8078–8086Google Scholar
  48. Gusain D, Srivastava V, Sillanpää M, Sharma YC (2016) Kinetics and isotherm study on adsorption of chromium on nano crystalline iron oxide/hydroxide: linear and nonlinear analysis of isotherm and kinetic parameters. Res Chem Intermed 42:7133–7151Google Scholar
  49. Hansen SF, Jensen KA, Baun A (2014) NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. Nanopart Res 16:2195.  https://doi.org/10.1007/s11051-013-2195-z Google Scholar
  50. Hansen SF, Roverskov Heggelund L, Revilla Besora P, Mackevica A, Boldrin A, Baun A (2016) Nanoproducts—what is actually available to European consumers? Environ Sci Nano 3:169–180Google Scholar
  51. Haynes VN, Warda JE, Russella BJ, Agrios AG (2017) Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms—current knowledge and suggestions for future research. Aquat Toxicol 185:138–148Google Scholar
  52. He X, Mc Alliser D, Aker WG, Hwang H (2016) Assessing the effect of different natural dissolved organic matters on the cytotoxicity of titanium dioxide nanoparticles with bacteria. J Environ Sci 48:230–236Google Scholar
  53. Heinlaan M, Muna M, Knöbel M, Kistler D, Odzak N, Kühnel D, Müller J, Gupta GS, Kumar A, Shanker R, Sigg L (2016) Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: an interlaboratory case study. Environ Pollut 216:689–699Google Scholar
  54. Hincapié I, Caballero-Guzmán A, Nowack B (2015) Nanomaterials in landfills. Module 3: nanomaterials in construction waste. EMPA Swiss Federal Laboratories for Materials Science and Technology, St. GallenGoogle Scholar
  55. Høgsberget T, Loeschner K, Löf D, Serup J (2011) Tattoo inks in general usage contain nanoparticles. BJD 165:1210–1218Google Scholar
  56. Holder AL, Vejerano EP, Zhoub X, Marr LC (2013) Nanomaterial disposal by incineration. Environ Sci Process Impacts 15:1652–1664Google Scholar
  57. Hua Z, Zhang J, Bai X, YeZ Tang Z, Liang L, Liu Y (2016) Aggregation of TiO2–graphene nanocomposites in aqueous environment: influence of environmental factors and UV irradiation. Sci Total Environ 539:196–205Google Scholar
  58. IARC (International Agency for Research on Cancer) (2010) Monographs on the evaluation of carcinogenic risks to humans. Carbon black, titanium dioxide, and talc. IARC Press, Lyon, p 93Google Scholar
  59. Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities toxicological implications and occupational risks. Toxicol Appl Pharmacol 329:96–111Google Scholar
  60. IHSS (International Humic Substances Society) April (2015) Website: http://www.humicsubstances
  61. Jeon S, Kim E, Lee J, Lee S (2016) Potential risks of TiO2 and ZnO nanoparticles released from sunscreens into outdoor swimming pools. J Hazard Mater 317:312–318Google Scholar
  62. Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781Google Scholar
  63. Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A (2015) NanoE-tox: new and in-depth database concerning ecotoxicity of nanomaterials. Nanotechnology 6:1788–1804Google Scholar
  64. Jung YJ, Park CB, Kim Y, Kim S, Pflugmacher S, Baik S (2015) Application of multi-species microbial bioassay to assess the effects of engineered nanoparticles in the aquatic environment: potential of a luminous microbial array for toxicity risk assessment (LumiMARA) on testing for surface-coated silver nanoparticles. Int J Environ Res Public Health 12:8172–8186Google Scholar
  65. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692Google Scholar
  66. Kwak JI, An YJ (2016) The current state of the art in research on engineered nanomaterials and terrestrial environments: different-scale approaches. Environ Res 15:1368–1382Google Scholar
  67. Lai RWS, Yeung KWY, Yung MMN, Djurišić AB, Giesy JP, Leung KMY (2018) Regulation of engineered nanomaterials: current challenges insights and future directions. Environ Sci Pollut Res. 25(4):3060–3077Google Scholar
  68. Li L, Sillanpää M, Risto M (2016a) Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters. Environ Pollut 219:132–138Google Scholar
  69. Li S, Ma H, Wallis LK, Etterson MA, Riley B, Hoff DJ, Diamond SA (2016b) Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. Sci Total Environ 542:324–333Google Scholar
  70. Libralato G (2014) The case of Artemia spp in nanoecotoxicology. Mar Environ Res 101:38–43Google Scholar
  71. Limpiteeprakan P, Babel S, Lohwacharin J, Takizawa S (2016) Release of silver nanoparticles from fabrics during the course of sequential washing. Environ Sci Pollut Res 23:22810–22818Google Scholar
  72. Lin D, Ma S, Zhou K, Wu F, Yang K (2015) The effect of water chemistry on homoaggregations of various nanoparticles: specific role of Cl ions. J Coll Interface Sci 450:272–278Google Scholar
  73. Lu H, Dong H, Fan W, Zuo J, Li X (2017) Aging and behaviour of functional TiO2 nanoparticles in aqueous environment. J Hazard Mater 325:113–119Google Scholar
  74. Luo X, Xu S, Yang Y, Li L, Chen S, Xu A, Wu L (2016) Insights into the ecotoxicity of silver nanoparticles transferred from Escherichia coli to Caenorhabditis elegans. Sci Rep.  https://doi.org/10.1038/srep36465 Google Scholar
  75. Ma Y, Metch JW, Vejerano EP, Miller IJ, Leon EC, Marr LC, Vikesland PJ, Pruden A (2015) Microbial community response of nitrifying sequencing batch reactors to silver zero-valent iron titanium dioxide and cerium dioxide nanomaterials. Water Res 68:87–97Google Scholar
  76. Ma Y, Metch JW, Yang Y, Pruden A, Zhang T (2016) Shift in antibiotic resistance gene profiles associated with nanosilver during wastewater treatment. FEMS Microbiol Ecol 92:1–8Google Scholar
  77. Majiedi SM, Kelly BC, Lee HK (2014) Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems: a multiparametric analysis. J Hazard Mater 264:370–379Google Scholar
  78. Malmsten M (2014) Nanomaterials as antimicrobial agents. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, BerlinGoogle Scholar
  79. Markus AA, Parsons JR, Roex EWM, de Voogt P, Laane RWPM (2015) Modeling aggregation and sedimentation of nanoparticles in the aquatic environment. Sci Total Environ 506–507:323–329Google Scholar
  80. Markus AA, Parsons JR, Roex EWM, de Voogt P, Laane RWPM (2016) Modelling the transport of engineered metallic nanoparticles in the river Rhine. Water Res 91:214–224Google Scholar
  81. Martin JD, Telgmann L, Metcalfe CD (2017) A method for preparing silver nanoparticle suspensions in bulk for ecotoxicity testing and ecological risk assessment. Bull Environ Contam Toxicol 98:589–594Google Scholar
  82. Mc Gillicuddy E, Murray I, Kavanagh S, Morrisond L, Fogarty A, Cormicana M, Dockeryf P, Prendergast M, Rowanc N, Morris D (2017) Silver nanoparticles in the environment: sources detection and ecotoxicology. Sci Total Environ 575:231–246Google Scholar
  83. Meier C, Voegelin A, Pradas del Real A, Sarret G, Mueller CR, Kaegi R (2016) Transformation of silver nanoparticles in sewage sludge during incineration. Environ Sci Technol 50:3503–3510Google Scholar
  84. Merrifield RC, Stephan C, Lead J (2017) Determining the concentration dependent transformations of Ag nanoparticles in complex media: using SP-ICP-MS and Au@Ag core–shell nanoparticles as tracers. Environ Sci Technol 51:3206–3213Google Scholar
  85. Minetto D, Volpi Ghirardini A, Libralato G (2016) Saltwater ecotoxicology of Ag Au CuO TiO2 ZnO and C60 engineered nanoparticles: an overview. Environ Intern 92–93:189–201Google Scholar
  86. Minetto D, Libralato G, Marcomini A, Volpi Ghirardini A (2017) Potential effects of TiO2 nanoparticles and TiCl4 in saltwater to Phaeodactylum tricornutum and Artemia franciscana. Sci Total Environ 579:1379–1386Google Scholar
  87. Nedyalkova MA, Donkova BV, Simeonov VD (2017) Chemometrics expertise in the links between ecotoxicity and physicochemical features of silver nanoparticles: environmental aspects. J AOAC Int 100(2):359–364Google Scholar
  88. Odzak N, Kistler D, Sigg L (2017) Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environ Pollut 226:1–11Google Scholar
  89. Peng C, Zhang W, Gao H, Li Y, Tong X, Li K, Zhu X, Wang Y, Chen Y (2017a) Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials 7:21Google Scholar
  90. Peng Y, Tsai Y, Hsiung C, Lin Y, Shih Y (2017b) Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. J Hazard Mater 322:348–356Google Scholar
  91. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments challenges and perspectives. Front Microbiol 8:1–13Google Scholar
  92. Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279Google Scholar
  93. Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10:501–523Google Scholar
  94. Sakallioglu T, Bakirdoven M, Temizel I, Demirel B, Copty NK, Onay TT, Uyguner Demirel CS, Karanfil T (2016) Leaching of nano-ZnO in municipal solid waste. J Hazard Mater 317:319–326Google Scholar
  95. Sani-Kast N, Labille J, Ollivier P, Slomberg D, Hungerbühler K, Scheringer M (2017) A network perspective reveals decreasing material diversity in studies on nanoparticle interactions with dissolved organic matter. Proc Natl Acad Sci USA 114:E1756–E1765Google Scholar
  96. Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumanng T, Lang F, Manz W, Schulz R, Vogel HJ (2015) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19Google Scholar
  97. Seitz F, Rosenfeldt RR, Müller M, Lüderwald S, Schulz R, Bundschuh M (2016) Quantity and quality of natural organic matter influence the toxicity of titanium dioxide nanoparticles. Nanotoxicology 10:1415–1421Google Scholar
  98. Sendra M, Yeste MP, Gatica JM, Moreno-Garrido I, Blasco J (2017a) Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere 179:279–289Google Scholar
  99. Sendra M, Sánchez-Quiles D, Blasco J, Moreno-Garrido I, Lubiána LM, Pérez-García S, Tovar-Sánchez A (2017b) Effects of TiO2 nanoparticles and sunscreens on coastal marine microalgae: ultraviolet radiation is key variable for toxicity assessment. Environ Int 98:62–68Google Scholar
  100. Shastri JP, Rupani MG, Jain RL (2012) Antimicrobial activity of nanosilver-coated socks fabrics against foot pathogens. J Text Inst 103:1234–1243Google Scholar
  101. Sheng Z, Liu Y (2017) Potential impacts of silver nanoparticles on bacteria in the aquatic environment. J Environ Manag 191:290–296Google Scholar
  102. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity abundance and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723Google Scholar
  103. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112Google Scholar
  104. Srivastava V, Sharma YC, Sillanpää M (2015a) Application of nano-magnesso ferrite (n-MgFe2O4) for the removal of Co2 + ions from synthetic wastewater: kinetic, equilibrium and thermodynamic studies. RSC Adv 338:42–54Google Scholar
  105. Srivastava V, Sharma YC, Sillanpää M (2015b) Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceram Int 41:6702–6709Google Scholar
  106. Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 21:463–474.  https://doi.org/10.1039/c2nr32447d Google Scholar
  107. Troester M, Brauch HJ, Hofmann T (2016) Vulnerability of drinking water supplies to engineered nanoparticles. Water Res 96:255–279Google Scholar
  108. Trouiller B, Reliene R, Westbrook A (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789Google Scholar
  109. Vejerano EP, Ma Y, Holder AL, Pruden A, Elankumaran S, Marr LC (2015) Toxicity of particulate matter from incineration of nanowaste. Environ Sci Nano 2:143–154Google Scholar
  110. Wang D, Li Y, Li Puma G, Wang C, Wang P, Zhang W, Wang Q (2015a) Mechanism and experimental study on the photocatalytic performance of Ag/AgCl@chiral TiO2 nanofibers photocatalyst: the impact of wastewater components. J Hazard Mater 285:277–284Google Scholar
  111. Wang H, Dong Y, Zhu M, Li X, Keller AA, Wang T, Li F (2015b) Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Res 80:130–138Google Scholar
  112. Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712Google Scholar
  113. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250Google Scholar
  114. Wigger H, Hackmann S, Zimmermann T, Köser J, Thöming J, von Gleich A (2015) Influences of use activities and waste management on environmental releases of engineered nanomaterials. Sci Total Environ 535:160–171Google Scholar
  115. Yang Y, Reed R, Schoepf J, Hristovski K, Herckes P, Westerhoff P (2017) Prospecting nanomaterials in aqueous environments by cloud-point extraction coupled with transmission electron microscopy. Sci Total Environ.  https://doi.org/10.1016/j.scitotenv.2017.01.059 Google Scholar
  116. Yin Y, Yang X, Zhou X, Wang W, Yu S, Liu J, Jiang G (2015) Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters. J Environ Sci 34:116–125Google Scholar
  117. Yoo-iam M, Chaichana R, Satapanajaru T (2014) Toxicity bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp) water flea (Moina macrocopa) blood worm (Chironomus spp) and silver barb (Barbonymus gonionotus). Chem Speciat Bioavailab 26:257–265Google Scholar
  118. Yue Y, Li X, Sigg L, Suter MJF, Pillai S, Behra R, Schirmer K (2017) Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. J Nanobiotechnol 15:16Google Scholar
  119. Zhang C, Hu Z, Li P, Gajaraj S (2016a) Governing factors affecting the impacts of silver nanoparticles on wastewater treatment. Sci Total Environ 572:852–873Google Scholar
  120. Zhang L, Li J, Yang K, Liu J, Lin D (2016b) Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environ Pollut 211:132–140Google Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Department of Experimental Medicine and SurgeryUniversity of Rome Tor VergataRomeItaly
  2. 2.Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRomeItaly

Personalised recommendations