Advertisement

A designed experimental approach for photocatalytic degradation of paraquat using α-Fe2O3@MIL-101(Cr)@TiO2 based on metal–organic framework

  • A. Khodkar
  • S. M. Khezri
  • A. R. Pendashteh
  • S. Khoramnejadian
  • L. Mamani
Original Paper
  • 24 Downloads

Abstract

A new magnetic α-Fe2O3@MIL-101(Cr)@TiO2 photocatalyst was successfully prepared. The structural and morphological properties of synthesized photocatalyst were studied by FTIR, XRD, SEM, EDX and BET analysis. Optimizing of the removal of paraquat herbicide from aqueous solution was investigated by response surface methodology based on Box–Behnken design. The interactive effects of four parameters including the dosage of catalyst, pH, the initial concentration of paraquat and contact time, all have been studied on the photocatalytic degradation and COD reduction. A quadratic polynomial model was adjusted to the data with an R2 of 0.89 for photocatalytic degradation and R2 of 0.92 for COD reduction, respectively. The photocatalytic degradation and COD reduction were obtained 87.46% and 90.09% at the optimal conditions, after 45 min using 0.2 g L−1 of α-Fe2O3@MIL-101(Cr)@TiO2, pH 7 and the concentration of paraquat 20 mg L−1. The kinetics of paraquat adsorption on the surface of α-Fe2O3@MIL-101(Cr)@TiO2 photocatalyst were obtained by the pseudo-second-order and parabolic diffusion models.

Keywords

Paraquat Box–Behnken design Photodegradation Chemical oxygen demand 

Notes

Acknowledgements

We gratefully acknowledge the staffs of the Research Council of Islamic Azad University of Damavand for their collaboration in this study.

References

  1. Abramovic BF, Despotovic VN, Sojic DV, Orcic DZ, Csanadi JJ, Cetojevic Simin DD (2013) Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: kinetics, mechanism, and toxicity of degradation products. Chemosphere 93:166–171.  https://doi.org/10.1016/j.chemosphere.2013.05.024 CrossRefGoogle Scholar
  2. Ahmed S, Rasul MG, Brown R, Hasib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330.  https://doi.org/10.1016/j.jenvman.2010.08.028 CrossRefGoogle Scholar
  3. Alvarez A, Maria Saez J, Davila Costa J, Leticia Colin V, Maria Soledad Fuentes M, Sergio Antonio Cuozzo S, Susana Benimeli C, Marta Alejandra Polti M, Julia Amoroso M (2016) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62.  https://doi.org/10.1016/j.chemosphere.2016.09.070 CrossRefGoogle Scholar
  4. American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater, 21st edn. American Water Works Association, Water Environment Federation, WashingtonGoogle Scholar
  5. Bajuk-Bogdanovic D, Jovic A, Vasiljevic BN, Milojevic-Rakica M, Kragovic M, Krajisnik D, Holclajtner-Antunovica I, Dondura V (2017) 12-Tungstophosphoric acid/BEA zeolite composites-characterization and application for pesticide removal. Mater Sci Technol B 225:60–67.  https://doi.org/10.1016/j.mseb.2017.08.011 CrossRefGoogle Scholar
  6. Beydoun D, Amal R, Low GKC, McEvoy S (2000) Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J Phys Chem B 104:4387–4396.  https://doi.org/10.1021/jp992088c CrossRefGoogle Scholar
  7. Bhattacharjee S, Chena Ahn WS (2014) Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv 4:52500–52525.  https://doi.org/10.1039/C4RA11259H CrossRefGoogle Scholar
  8. Bulut E, Özacar M, Sengil IA (2008) Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J Hazard Mater 154:613–622.  https://doi.org/10.1016/j.jhazmat.2007.10.071 CrossRefGoogle Scholar
  9. Castillo Diaz JM, Delgado-Moreno L, Nunez R, Nogales R, Romero E (2016) Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts. Bioresour Technol 214:234–241.  https://doi.org/10.1016/j.biortech.2016.04.105 CrossRefGoogle Scholar
  10. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959.  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  11. Chen JS, Chen CP, Liu J, Xu R, Qiao SZ, Lou XW (2011) Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chem Commun 47:2631–2633.  https://doi.org/10.1039/C0CC04471G CrossRefGoogle Scholar
  12. Cheng P, Qiu J, Gu M, Shangguan W (2004) Synthesis of shape-controlled titania particles from a precursor solution containing urea. Mater Lett 58:3751–3755.  https://doi.org/10.1016/j.matlet.2004.08.008 CrossRefGoogle Scholar
  13. Corma A, Garcia H, Xamena FXL (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655.  https://doi.org/10.1021/cr9003924 CrossRefGoogle Scholar
  14. Daneshvar N, Aber S, Seyed Dorraji MS, Khataee AR, Rasoulifard MH (2007) Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep Purif Technol 58:91–98.  https://doi.org/10.1016/j.seppur.2007.07.016 CrossRefGoogle Scholar
  15. De-Almeida RM, Yonamine M (2007) Gas chromatographic-mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples. J Chromatogr B 853:260–264.  https://doi.org/10.1016/j.jchromb.2007.03.026 CrossRefGoogle Scholar
  16. Dekrafft KE, Wang C, Lin W (2012) Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv Mater 24:2014–2018.  https://doi.org/10.1002/adma.201200330 CrossRefGoogle Scholar
  17. Dhaouadi A, Adhoum N (2009) Degradation of paraquat herbicide by electrochemical advanced oxidation methods. J Electroanal Chem 637:33–42.  https://doi.org/10.1016/j.jelechem.2009.09.027 CrossRefGoogle Scholar
  18. Doulia DS, Anagnos EK, Liapis KS, Klimentzos DA (2016) Removal of pesticides from white and red wines by microfiltration. J Hazard Mater 317:135–146.  https://doi.org/10.1016/j.jhazmat.2016.05.054 CrossRefGoogle Scholar
  19. E-Shall MS, Abdelsayed V, Khder AERS, Hassan HMA, El-Kaderi HM, Reich TE (2009) Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101. J Mater Chem 19:7625–7631.  https://doi.org/10.1039/B912012B CrossRefGoogle Scholar
  20. Florencio MH, Pires E, Castro AL, Nunes MR, Borges C, Costa FM (2004) Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterisation of intermediates. Chemosphere 55:345–355CrossRefGoogle Scholar
  21. Fu JF, Zhao YQ, Xue XD, Li WC, Babatunde AO (2009) Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via Box–Behnken design. Desalination 243:42–51.  https://doi.org/10.1016/j.desal.2008.03.038 CrossRefGoogle Scholar
  22. Gobas FPC, Zhang X, Wells R (1993) Gastrointestinal magnification: the mechanism of bio magnification and food chain accumulation of organic chemicals. Environ Sci Technol 27:2855–2863.  https://doi.org/10.1021/es00049a028 CrossRefGoogle Scholar
  23. Guo ZC, Shao CL, Zhang MY, Mu JB, Zhang ZY, Zhang P, Chen P, Liu YC (2011) Dandelion-like Fe3O4@CuTNPc hierarchical nanostructures as a magnetically separable visible-light photocatalyst. J Mater Chem 21:12083–12088.  https://doi.org/10.1039/C1JM11098E CrossRefGoogle Scholar
  24. Ho YS, McKay GA (1998) Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76(4):332–340.  https://doi.org/10.1205/095758298529696 CrossRefGoogle Scholar
  25. Horcajada P, Serre C, Maurin G, Ramashye NA, Balas F, Vallet-Regi M, Sebban M, Taulelle F, Ferey G (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780.  https://doi.org/10.1021/ja710973k CrossRefGoogle Scholar
  26. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Ferey G, Couvreur P, Gref R (2011) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178.  https://doi.org/10.1038/nmat2608 CrossRefGoogle Scholar
  27. Horwitz W (2000) Standard methods for the examination of water and wastewater, 20th edn. APHA, WashingtonGoogle Scholar
  28. Jhung SH, Lee JH, Yoon JW, Serre C, Ferey G, Chang JS (2007) Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv Mater 19(1):121–124.  https://doi.org/10.1002/adma.200601604 CrossRefGoogle Scholar
  29. Kang M (2002) Preparation of TiO2 photocatalyst film and its catalytic performance for 1,1-dimethyl-4,4-bipyidium dichloride decomposition. Appl Catal B Environ 37:187–196.  https://doi.org/10.1016/S0926-3373(01)00303-4 CrossRefGoogle Scholar
  30. Kearney PC, Ruth JM, Zeng Q, Mazzocchi P (1985) UV-ozonation of paraquat. J Agric Food Chem 33:953–957.  https://doi.org/10.1021/jf00065a044 CrossRefGoogle Scholar
  31. Kida M, Ziembowicz S, Koszelnik P (2018) Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process. Sep Purif Technol 192:457–464.  https://doi.org/10.1016/j.seppur.2017.10.046 CrossRefGoogle Scholar
  32. Kodama T, Harada Y, Ueda M, Shimizu K, Shuto K, Komarneni S (2001) Selective exchange and fixation of strontium ions with ultrafine Na-4-mica. Langmuir 17:4881–4886.  https://doi.org/10.1021/la001774w CrossRefGoogle Scholar
  33. Kown YT, Song KY, Lee WI, Choi GJ, Do YR (2000) Photochemistry behavior of WO3-loaded TiO2 in an oxidation reaction. J Catal 191:192–199.  https://doi.org/10.1006/jcat.1999.2776 CrossRefGoogle Scholar
  34. Kumar R, Jain SK, Misra RK, Kachchwaha M, Khatri PK (2012) Aqueous heavy metals removal by adsorption on β-diketone-functionalized styrene–divinylbenzene copolymeric resin. Int J Environ Sci Technol 9:79–84.  https://doi.org/10.1007/s13762-011-0019-1 CrossRefGoogle Scholar
  35. Kuo S, Lotse G (1974) Kinetics of phosphate adsorption and desorption by hematite and gibbsite1. Soil Sci 116:400–406.  https://doi.org/10.1097/00010694-197312000-00002 CrossRefGoogle Scholar
  36. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403.  https://doi.org/10.1021/ja02242a004 CrossRefGoogle Scholar
  37. Lee S, Drwiega J, Wu CY, Mazyck D, Sigmund WM (2004) Anatase TiO2 nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic photocatalyst. Chem Mater 16:1160–1164.  https://doi.org/10.1021/cm0351902 CrossRefGoogle Scholar
  38. Lei L, Chu HP, Hu X, Yue PL (1999) Preparation of heterogeneous photocatalyst (TiO2/alumina) by metallo-organic chemical vapor deposition. Ind Eng Chem Res 38:3381–3385.  https://doi.org/10.1021/ie980677j CrossRefGoogle Scholar
  39. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504.  https://doi.org/10.1039/B802426J CrossRefGoogle Scholar
  40. Lin H, Liao S, Hung S (2005) The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol A Chem 174:82–87.  https://doi.org/10.1016/j.jphotochem.2005.02.015 CrossRefGoogle Scholar
  41. Liu B, Torimoto T, Yoneyama H (1998) Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvent. J Photochem Photobiol A Chem 113:93–97.  https://doi.org/10.1016/S1010-6030(97)00318-3 CrossRefGoogle Scholar
  42. Liu G, Li L, Xu D, Huang X, Xu X, Zheng S, Zhang Y, Lin H (2017) Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr Polym 175:584–591.  https://doi.org/10.1016/j.carbpol.2017.06.074 CrossRefGoogle Scholar
  43. Makovec D, Sajko M, Selisnik A, Drofenik M (2011) Magnetically recoverable photocatalytic nanocomposite particles for water treatment. Macromol Chem Phys 129:83–94.  https://doi.org/10.1016/j.matchemphys.2011.03.059 CrossRefGoogle Scholar
  44. Maksimchuk NV, Timofeeva MN, Melgunov MS, Shmakov AN, Chesalov YA, Dybtsev DN, Fedin VP, Kholdeeva OA (2008) Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. J Catal 257(2):315–323.  https://doi.org/10.1016/j.jcat.2008.05.014 CrossRefGoogle Scholar
  45. Marien CBD, Cottineau T, Robert D, Drogui P (2016) TiO2 nanotube arrays: influence of tube length on the photocatalytic degradation of paraquat. Appl Catal B Environ 194:1–6.  https://doi.org/10.1016/j.apcatb.2016.04.040 CrossRefGoogle Scholar
  46. Mir NA, Haque M, Khan A, Muneer M, Vijayalakshmi S (2014) Photocatalytic degradation of herbicide Bentazone in aqueous suspension of TiO2: mineralization, identification of intermediates and reaction pathways. Environ Technol 35:407–415.  https://doi.org/10.1080/09593330.2013.829872 CrossRefGoogle Scholar
  47. Mirmasoomi SR, Mehdipour Ghazi M, Galedari M (2016) Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep Purif Technol 175:418–427.  https://doi.org/10.1016/j.seppur.2016.11.021 CrossRefGoogle Scholar
  48. Moctezuma E, Leyva E, Monreal E, Villegas N, Infante D (1999) Photocatalytic degradation of the herbicide “Paraquat”. Chemosphere 39(3):511–517.  https://doi.org/10.1016/S0045-6535(98)00599-2 CrossRefGoogle Scholar
  49. Nagaraju P, Khunphonoi R, Harikaranahalli Puttaiah S, Suwannaruang T, Kaewbuddee C, Wantala K (2017) Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution. J Adv Oxid Technol 20:1–12.  https://doi.org/10.1515/jaots-2017-0004 CrossRefGoogle Scholar
  50. Nakaoka Y, Katsumata H, Kaneco S, Suzuki T, Ohta K (2010) Photocatalytic degradation of diazinon in aqueous solution by platinized TiO2. Desalin Water Treat 13:427–436.  https://doi.org/10.5004/dwt.2010.1000 CrossRefGoogle Scholar
  51. Nguyen HTT, Doan DNA, Truong T (2017) Unprecedented salt-promoted direct arylation of acidic sp2 CH bonds under heterogeneous Ni-MOF-74 catalysis: synthesis of bioactive azole derivatives. J Mol Catal A: Chem 426:141–149.  https://doi.org/10.1016/j.molcata.2016.11.009 CrossRefGoogle Scholar
  52. Noguchi T, Fujishima A, Sawunyama P, Hashimoto K (1998) Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Ind Eng Chem Res 32:3831–3833.  https://doi.org/10.1021/es980299 CrossRefGoogle Scholar
  53. Nur-Afiqah B, Rusmidah A, Wan Azelee Wan AB, Leny Y (2016) Role of heterojunction ZrTiO4/ZrTi2O6/TiO2 photocatalyst towards the degradation of paraquat dichloride and optimization study by Box–Behnken design. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2016.02.011 CrossRefGoogle Scholar
  54. Petit V, Cabridenc R, Swannell RPJ, Sokhi RS (1995) Review strategies for modelling the environmental fate of pesticides discharged into riverine systems. Environ Int 21(2):167–176.  https://doi.org/10.1016/0160-4120(95)00006-2 CrossRefGoogle Scholar
  55. Plakas KV, Karabelas AJ (2012) Removal of pesticides from water by NF and RO membranes—a review. Desalination 287:255–265.  https://doi.org/10.1016/j.desal.2011.08.003 CrossRefGoogle Scholar
  56. Real FJ, Benitez FJ, Acero JL, Gonzalez M (2007) Removal of diazinon by various advanced oxidation processes. J Chem Technol Biotechnol 82:566–574.  https://doi.org/10.1002/jctb.1702 CrossRefGoogle Scholar
  57. Reddy PVL, Kim KH (2015) A review of photochemical approaches for the treatment of a wide range of pesticides. J Hazard Mater 285:325–335.  https://doi.org/10.1016/j.jhazmat.2014.11.036 CrossRefGoogle Scholar
  58. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939.  https://doi.org/10.1002/anie.201001374 CrossRefGoogle Scholar
  59. Saini R, Kumar P (2016) Simultaneous removal of methyl parathion and chlorpyrifos pesticides from model wastewater using coagulation/flocculation: central composite design. J Environ Chem 4(1):673–680.  https://doi.org/10.1016/j.jece.2015.12.020 CrossRefGoogle Scholar
  60. Sajjadifar S, Abbasi Z, Rezaee Nezhad E, Rahimi Moghaddam M, Karimian S, Miri S (2014) Ni2+ supported on hydroxyapatite-core-shell γ-Fe2O3 nanoparticles: a novel, highly efficient and reusable Lewis acid catalyst for the regioselective azidolysis of epoxides in water. J Iran Chem Soc 11(2):335–340.  https://doi.org/10.1007/s13738-013-0304-7 CrossRefGoogle Scholar
  61. Shabeer TP, Saha A, Gajbhiye VT, Gupta S, Manjaiah KM, Varghese E (2014) Simultaneous removal of multiple pesticides from water: effect of organically modified clays as coagulant aid and adsorbent in coagulation-flocculation process. Environ Technol 35:2619–2627.  https://doi.org/10.1080/09593330.2014.914573 CrossRefGoogle Scholar
  62. Sorolla MG, Dalida ML, Khemthong P, Grisdanurak N (2012) Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light. J Environ Sci 24(6):1125–1132.  https://doi.org/10.1016/S1001-0742(11)60874-7 CrossRefGoogle Scholar
  63. Su H, Lin Y, Wang Z, Wong YL, Chen X, Chen TW (2016) Dominic Chan, Magnetic metal-organic framework-titanium dioxide nanocomposite as adsorbent in the magnetic solid-phase extraction of fungicides from environmental water samples. J Chromatogr A 1466:21–28.  https://doi.org/10.1016/j.chroma.2016.08.066 CrossRefGoogle Scholar
  64. Taylor-Pashow KML, Rocca JD, Xie ZG, Tran S, Lin WB (2009) Post-synthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Ceram Soc 131(40):14261–14263.  https://doi.org/10.1021/ja906198y CrossRefGoogle Scholar
  65. Tennakone K, Kottegoda IRM (1996) Photocatalytic mineralization of paraquat dissolved in water by TiO2 supported on polythene and polypropylene films. J Photochem Photobiol A Chem 93:79–81.  https://doi.org/10.1016/1010-6030(95)04141-9 CrossRefGoogle Scholar
  66. Trovo AG, Gomes Junior O, Machado AEH, Borges Neto W, Silva JO (2013) Degradation of the herbicide paraquat by photo-Fenton process: optimization by experimental design and toxicity assessment. J Braz Chem Soc 24(1):76–84.  https://doi.org/10.1590/S0103-50532013000100011 CrossRefGoogle Scholar
  67. Tsai WT, Chen HR (2013) Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. Int J Environ Sci Technol 10(6):1349–1356.  https://doi.org/10.1007/s13762-012-0174-z CrossRefGoogle Scholar
  68. Wang Y, Li SK, Xing XR, Huang FZ, Shen YH, Xie AJ, Wang XF, Zhang J (2011) Self-Assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core–shell architectures and their enhanced photocatalytic activity under visible light. Chem Eur J 17:4802–4808.  https://doi.org/10.1002/chem.201001846 CrossRefGoogle Scholar
  69. Wee LH, Bonino F, Lamberti C, Bordigab S, Martensa JA (2014) Cr-MIL-101 encapsulated Keggin phosphotungstic acid as active nanomaterial for catalysing the alcoholysis of styrene oxide. Green Chem 16:1351–1357.  https://doi.org/10.1039/C3GC41988F CrossRefGoogle Scholar
  70. Xi GC, Yue B, Cao JY, Ye JH (2011) Fe3O4/WO3 hierarchical core–shell structure: high-performance and recyclable visible-light photocatalysis. Chem Eur J 17:5145–5154.  https://doi.org/10.1002/chem.201002229 CrossRefGoogle Scholar
  71. Xu Y, Chen Q, Yang H, Lv M, He Q, Liu X, Wei F (2015) Enhanced photodegradation of Rhodamine B under visible light by N-K2Ti4O9/MIL-101. Compos Mater Sci Semicond Process 36:115–119.  https://doi.org/10.1016/j.mssp.2015.03.025 CrossRefGoogle Scholar
  72. Zahedi F, Behpour M, Ghoreishi SM, Khalilian H (2015) Photocatalytic degradation of paraquat herbicide in the presence TiO2 nanostructure thin films under visible and sun light irradiation using continuous flow photoreactor. Sol Energy 120:287–295.  https://doi.org/10.1016/j.solener.2015.07.010 CrossRefGoogle Scholar
  73. Zhang Y, Zhang W, Liao X, Zhang J, Hou Y, Xiao Z, Chen F, Hu X (2010) Degradation of diazinon in apple juice by ultrasonic treatment. Ultrason Sonochem 17(4):662–668.  https://doi.org/10.1016/j.ultsonch.2009.11.007 CrossRefGoogle Scholar
  74. Zhao D, Timmons DJ, Yuan D, Zhou HC (2011) Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res 44:123–133.  https://doi.org/10.1021/ar100112y CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  • A. Khodkar
    • 1
  • S. M. Khezri
    • 2
  • A. R. Pendashteh
    • 3
    • 4
  • S. Khoramnejadian
    • 1
  • L. Mamani
    • 2
  1. 1.Department of the Environment, Damavand BranchIslamic Azad UniversityDamavandIran
  2. 2.Faculty of Environment and Energy, Tehran Science and Research BranchIslamic Azad UniversityTehranIran
  3. 3.The Caspian Sea Basin Research CenterUniversity of GuilanRashtIran
  4. 4.Department of Chemical EngineeringUniversity of GuilanRashtIran

Personalised recommendations