Water quality indices for groundwater impacted by geogenic background and anthropogenic pollution: case study in Hidalgo, Mexico

  • D. A. Rivera-Rodríguez
  • R. I. Beltrán-Hernández
  • C. A. Lucho-Constantino
  • C. Coronel-Olivares
  • S. Hernández-González
  • M. Villanueva-Ibáñez
  • V. Nolasco-Arizmendi
  • G. A. Vázquez-RodríguezEmail author
Original Paper


The studies about the quality of groundwater resources are scarce in Mexico, and often they do not consider indicators of geogenic background and anthropogenic pollution. So, we examined the quality of groundwater from five wells of the Apan aquifer (Hidalgo, Mexico). Four of these wells were taken as reference samples, while the Santa Cruz well was considered as the study site because it is locally recognized as a problem due to the geogenic presence of manganese. In all the sites, variables related to mineralization processes were analyzed, and a quality index (MWQI, from mineralization-based water quality index) was calculated. In the study site samples, we also determined several indicators of geogenic background (arsenic, manganese, and other heavy metals) and anthropogenic pollution (as organic matter, nutrients, and several microbial indicators), from which another quality index (GAWQI, from geogenic background and anthropogenic pollution-based water quality index) was calculated. The MWQI values classified the groundwater from all the sites, even that from the Santa Cruz well, as “excellent for drinking.” When the GAWQI was computed for the Santa Cruz site, this groundwater was found “unsuitable for drinking” due to its extremely high manganese content. We conclude that the GAWQI could represent a valuable communication tool to inform the population and the authorities about the quality of the groundwater resources.


Aquifer Water resources Drinking water Manganese Water governance 



The authors acknowledge financial support from PRODEP-SEP to the project “Remoción biológica de Fe y Mn de agua subterránea mediante la obtención de óxidos biogénicos con potencial valor agregado (Red Temática de Colaboración en Ingeniería de Procesos Avanzados de Sistemas Ambientales).” The authors thank Pablo Irving Fragoso López for his kind help to elaborate the map of the sampling sites. D. A. Rivera-Rodríguez is grateful for the Ph. D. scholarship granted by the Mexican Council of Science and Technology (CONACYT).


  1. Al-Omran A, Al-Barakah F, Altuquq A, Aly A, Nadeem M (2015) Drinking water quality assessment and water quality index of Riyadh, Saudi Arabia. Water Qual Res J 50(3):287–296CrossRefGoogle Scholar
  2. Amini M (2011) Putting geogenic contamination on the map. Eawag News 71:6–9Google Scholar
  3. APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association/American Water Works Association/Water Environment Federation, WashingtonGoogle Scholar
  4. Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30(4):345–353CrossRefGoogle Scholar
  5. Bodrud-Doza M, Islam AT, Ahmed F, Das S, Saha N, Rahman MS (2016) Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci 30(1):19–40CrossRefGoogle Scholar
  6. Böhlke JK, Smith RL, Miller DN (2006) Ammonium transport and reaction in contaminated groundwater: application of isotope tracers and isotope fractionation studies. Water Resour Res 42(5):W05411CrossRefGoogle Scholar
  7. CNA (2015) Actualización de la disponibilidad media anual de agua en el acuífero Apan (1320), Estado de Hidalgo (in Spanish). Comisión Nacional del Agua, Mexico. Accessed 6 July 2017
  8. CNA (2016) Estadísticas del Agua en México (in Spanish). Comisión Nacional del Agua, MexicoGoogle Scholar
  9. Custodio E (2013) Trends in groundwater pollution: loss of groundwater quality and related services. Groundwater governance: a global framework for country action. GEF 10(3726):1–76. Accessed 31 May 2017
  10. Del Campo MM, Esteller MV, Expósito JL, Hirata R (2014) Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environ Monit Assess 186(5):2979–2999CrossRefGoogle Scholar
  11. Dermatas D (2017) Waste management and research and the sustainable development goals: focus on soil and groundwater pollution. Waste Manag Res 35(5):453–455CrossRefGoogle Scholar
  12. Domínguez-Mariani E, Vargas-Cabrera C, Martínez-Mijangos F, Gómez-Reyes E, Monroy-Hermosillo O (2015) Determinación de los procesos hidrogeoquímicos participantes en la composición del agua de las fuentes de abastecimiento a pobladores de la delegación Iztapalapa, DF, México (in Spanish). Bol Soc Geol Mex 67(2):299–313Google Scholar
  13. Famiglietti JS (2014) The global groundwater crisis. Nat Clim Change 4(11):945–948CrossRefGoogle Scholar
  14. Foster S, Chilton J, Nijsten GJ, Richts A (2013) Groundwater—a global focus on the ‘local resource’. Curr Opin Environ Sustain 5(6):685–695CrossRefGoogle Scholar
  15. Frisbie SH, Mitchell EJ, Dustin H, Maynard DM, Sarkar B (2012) World Health Organization discontinues its drinking-water guideline for manganese. Environ Health Perspect 120(6):775–778CrossRefGoogle Scholar
  16. Gallegos E, Warren A, Robles E, Campoy E, Calderón A, Sainz MG, Bonilla P, Escolero O (1999) The effects of wastewater irrigation on groundwater quality in Mexico. Water Sci Technol 40(2):45–52CrossRefGoogle Scholar
  17. Homoncik SC, MacDonald AM, Heal KV, Dochartaigh BÉÓ, Ngwenya BT (2010) Manganese concentrations in Scottish groundwater. Sci Total Environ 408(12):2467–2473CrossRefGoogle Scholar
  18. Huizar AR, Méndez GT, Madrid RR (1998) Patterns of groundwater hydrochemistry in Apan-Tochac sub-basin, Mexico. Hydrol Sci J 43(5):669–685CrossRefGoogle Scholar
  19. Huizar-Álvarez R (1997) Hydrochemistry of the aquifers in the Rio las Avenidas basin, Pachuca, Hidalgo, Mexico. Water Air Soil Pollut 96(1–4):185–201Google Scholar
  20. Huizar-Álvarez R, Campos-Enríquez JO, Lermo-Samaniego J, Delgado-Rodríguez O, Huidobro-González A (1997) Geophysical and hydrogeological characterization of the sub-basins of Apan and Tochac (Mexico basin). Geofis Int 36(4):217–234Google Scholar
  21. Huizar-Álvarez R, Campos-Enríquez O, Mitre-Salazar LM, Alatriste-Vilchis D, Méndez-García T, Juárez-Sánchez F (2001) Evaluación hidrogeológica de la subcuenca de Tecocomulco, Estados de Hidalgo, Puebla y Tlaxcala, México (in Spanish). Rev Mex Cien Geol 18(1):55–73Google Scholar
  22. Hurley T, Sadiq R, Mazumder A (2012) Adaptation and evaluation of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for use as an effective tool to characterize drinking source water quality. Water Res 46(11):3544–3552CrossRefGoogle Scholar
  23. IDNR (2002) Ground-water quality. In ground-water resources in the White and West Fork White River Basin, Indiana. Indiana Department of Natural Resources, Indianapolis. Accessed 6 July 2017
  24. Jain CK, Bandyopadhyay A, Bhadra A (2010) Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environ Monit Assess 166(1):663–676CrossRefGoogle Scholar
  25. Lesser-Carrillo LE, Lesser-Illades JM, Arellano-Islas S, González-Posadas D (2011) Balance hídrico y calidad del agua subterránea en el acuífero del Valle del Mezquital, México central (in Spanish). Rev Mex Cien Geol 28(3):323–336Google Scholar
  26. Lucho-Constantino CA, Poggi-Varaldo HM, Beltrán-Hernández RI, Prieto-García F, Álvarez-Suárez M (2005) A multivariate analysis of the accumulation and fractionation of selected cations and heavy metals in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environ Int 31:313–323CrossRefGoogle Scholar
  27. Mazari-Hiriart M, López-Vidal Y, Ponce-de-León S, Calva JJ, Rojo-Callejas F, Castillo-Rojas G (2005) Longitudinal study of microbial diversity and seasonality in the Mexico City metropolitan area water supply system. Appl Environ Microbiol 71(9):5129–5137CrossRefGoogle Scholar
  28. Medina MC, Cano PR (2001) Contaminación por nitratos en agua, suelo y cultivos de la Comarca Lagunera (in Spanish). Rev Chapingo Serie Zonas Áridas 2(1):9–14Google Scholar
  29. Montiel-Palma S, Armienta-Hernández MA, Rodríguez-Castillo R, Domínguez-Mariani E (2014) Identificación de zonas de contaminación por nitratos en el agua subterránea de la zona sur de la Cuenca de México (in Spanish). Rev Int Contam Amb 30(2):149–165Google Scholar
  30. Mubarak A, Howald RA, Woodriff R (1977) Elimination of chloride interferences with mercuric ions in the determination of nitrates by the phenol disulfonic acid method. Anal Chem 49(6):857–860CrossRefGoogle Scholar
  31. Murphy HM, Prioleau MD, Borchardt MA, Hynds PD (2017) Epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeol J 25(4):981–1001CrossRefGoogle Scholar
  32. NOM (2000) Modificación a la Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Modified guidelines for drinking water and treatments to be applied (in Spanish). Secretaría de Salud, MexicoGoogle Scholar
  33. Oişte AM (2014) Groundwater quality assessment in urban environment. Int J Environ Sci Technol 11(7):2095–2102CrossRefGoogle Scholar
  34. Oulhote Y, Mergler D, Barbeau B, Bellinger DC, Bouffard T, Brodeur ME, Saint-Amour D, Legrand M, Sauvé S, Bouchard MF (2014) Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect 122:1343–1350CrossRefGoogle Scholar
  35. Patra HP, Adhikari SK, Kunar S (eds) (2016) Groundwater quality and contamination. Groundwater prospecting and management. Springer, Singapore, pp 183–195Google Scholar
  36. Piña M, Ramírez A (2003) Remoción de Hierro y Manganeso en Fuentes de Agua Subterránea para Abastecimiento Público (in Spanish). In Agua potable para comunidades rurales, reuso y tratamientos avanzados de aguas residuales domésticas, Red Iberoamericana de Potabilización y Depuración del Agua. Accessed 6 July 2017
  37. Regional Salinity Laboratory (1954) Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, WashingtonGoogle Scholar
  38. Sethy SN, Syed TH, Kumar A (2017) Evaluation of groundwater quality in parts of the Southern Gangetic Plain using water quality indices. Environ Earth Sci 76(3):116CrossRefGoogle Scholar
  39. Singhal BBS, Gupta RP (eds) (2010) Groundwater contamination. Applied hydrogeology of fractured rocks. Springer, Dordrecht, pp 221–236Google Scholar
  40. Smith M, Cross K, Paden M, Laban P (2016) Spring—managing groundwater sustainability. IUCN, GlandCrossRefGoogle Scholar
  41. Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater—a review. J Environ Qual 22(3):392–402CrossRefGoogle Scholar
  42. Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Ganthi RR, Chidambaram S, Anandhan P, Manivannan R, Vasudevan S (2010) Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ Monit Assess 171(1–4):595–609CrossRefGoogle Scholar
  43. Vörösmarty CJ, Pahl-Wostl C, Bunn SE, Lawford R (2013) Global water, the Anthropocene and the transformation of a science. Curr Opin Environ Sustain 5(6):539–550CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Área Académica de QuímicaUniversidad Autónoma del Estado de HidalgoMineral de la ReformaMexico
  2. 2.Universidad Tecnológica de Tula-TepejiTula de AllendeMexico
  3. 3.Universidad Politécnica de PachucaZempoalaMexico

Personalised recommendations