Application of TiO2-supported Au for ozone molecule removal from environment: a van der Waals-corrected DFT study

  • A. AbbasiEmail author
  • J. J. Sardroodi
Original Paper


In this paper, we examined the interaction of ozone molecule with TiO2-supported Au nanoparticles by performing first-principles calculations within density functional theory. The structural properties including bond lengths, bond angles and adsorption energies were calculated. The electronic properties were analyzed in view of the Mulliken charges and projected density of states. The results show that the adsorption of O3 molecule on the N-doped TiO2-supported Au nanoparticle is more energetically favorable than the adsorption on the pristine one, suggesting that the N-doped TiO2-supported Au nanoparticle can react with O3 molecule more strongly. It was found that the O3 molecule tends to be strongly adsorbed on the surface of Au nanoparticles through its side oxygen atoms, providing a bridge geometry. On the TiO2 side of TiO2-supported Au overlayer, there is also a strong binding between the fivefold coordinated titanium atoms and the side oxygen atoms of O3 molecule, where the titanium atoms represent a double contacting point with oxygen atoms. Therefore, the obtained results also propose a theoretical basis for the potential applications of TiO2-supported Au nanoparticles in gas sensor devices.


Density functional theory TiO2 O3 TiO2-supported Au nanoparticles Adsorption 



This work has been supported by Azarbaijan Shahid Madani University.

Supplementary material

13762_2018_1733_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2277 kb)


  1. Abbasi A, Sardroodi JJ (2016a) N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. J Environ Sci Nano 3:1153–1164CrossRefGoogle Scholar
  2. Abbasi A, Sardroodi JJ (2016b) Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations. J Comput Theor Chem 600:2457–2469Google Scholar
  3. Abbasi A, Sardroodi JJ (2016c) A first-principles study of the interaction of aspirin with nitrogen-doped TiO2 anatase nanoparticles. Nanomed Res J 1(2):69–78Google Scholar
  4. Abbasi A, Sardroodi JJ (2016d) A theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: applications to gas sensor devices. Int J Nano Dimens 7:349–359Google Scholar
  5. Abbasi A, Sardroodi JJ (2017a) Van der Waals corrected DFT study on the adsorption behaviors of TiO2 anatase nanoparticles as potential molecule sensor for thiophene detection. J Water Environ Nanotechnol 2:52–65Google Scholar
  6. Abbasi A, Sardroodi JJ (2017b) A theoretical investigation of the interaction of Immucillin-A with N-doped TiO2 anatase nanoparticles: applications to nanobiosensors and nanocarriers. Nanomed Res J 1(3):128–138Google Scholar
  7. Abbasi A, Sardroodi JJ, Ebrahimzadeh AR (2016) TiO2/gold nanocomposite as an extremely sensitive molecule sensor for NO2 detection: a DFT study. J Water Environ Nanotechnol 1:55–62Google Scholar
  8. Batzilla M, Morales EH, Diebold U (2007) Surface studies of nitrogen implanted TiO2. J Chem Phys 339:36–43Google Scholar
  9. Buonsanti R, Grillo V, Carlino E, Giannini C, Kipp T, Cingolani R, Cozzoli PD (2008) Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J Am Chem Soc 130:11223–11233CrossRefGoogle Scholar
  10. Cassaignon S, Koelsch M, Jolivet JP (2007) Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid. J Mater Sci 42:6689–6695CrossRefGoogle Scholar
  11. Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306(5694):252–255CrossRefGoogle Scholar
  12. Chen MS, Goodman DW (2006) Structure—activity relationships in supported Au catalysts. Catal Today 111:22–33CrossRefGoogle Scholar
  13. Chrétien S, Metiu H (2007) O2 evolution on a clean partially reduced rutile TiO2 (110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. J Chem Phys 127:084704CrossRefGoogle Scholar
  14. Cosandey F, Madey TE (2001) Growth, morphology, interfacial effects and catalytic properties of au on TiO2. Surf Rev Lett 8:73CrossRefGoogle Scholar
  15. Di Paola A, Addamo M, Bellardita M, Cazzanelli E, Palmisano L (2007) Preparation of photocatalytic brookite thin films. Thin Solid Films 515(7):3527–3529CrossRefGoogle Scholar
  16. Djaoued Y, Bruning R, Bersani D, Lottici PP, Badilescu S (2004) Sol–gel nanocrystalline brookite-rich titania films. Mater Lett 58(21):2618–2622CrossRefGoogle Scholar
  17. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  18. Fujishima A, Zhang X, Tryk DA (1992) TiO2 photocatalysis and related surface phenomena. J Surf Sci Rep 63:515–582CrossRefGoogle Scholar
  19. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis: fundamentals and applications. BKC, TokyoGoogle Scholar
  20. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  21. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar
  22. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  23. Habibpour R, Kashi E, Vaziri R (2017) Computational study of electronic, spectroscopic and chemical properties of Cun(n=2-8) nanoclusters for CO adsorption. Int J Nano Dimens 8(2):114–123Google Scholar
  24. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0° C. J Chem Lett 16(2):405CrossRefGoogle Scholar
  25. Hayashi TM, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566–575CrossRefGoogle Scholar
  26. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. J Phys Rev 136:B864CrossRefGoogle Scholar
  27. Iskandar F, Nandiyanto ABD, Yun KM, Hogan CJ, Okuyama K, Biswas P (2007) Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templatings. Adv Mater 19:1408–1412CrossRefGoogle Scholar
  28. Isley SL, Penn RL (2006) Relative brookite and anatase content in sol–gel synthesized titanium dioxide nanoparticles. J Phys Chem B 110:15134CrossRefGoogle Scholar
  29. Katrib Y, Martin ST, Hung HM, Rudich Y, Zhang H, Slowik JG (2004) Products and mechanisms of ozone reactions with oleic acid for aerosol particles having core-shell morphologies. J Phys Chem A 108(32):6686–6695CrossRefGoogle Scholar
  30. Kobayashi M, Petrykin VV, Kakihana M (2007) One-step synthesis of TiO2 (B) nanoparticles from a water-soluble titanium complex. Chem Mater 19:5373–5376CrossRefGoogle Scholar
  31. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. J Phys Rev 140:A1133CrossRefGoogle Scholar
  32. Koklj A (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. J Comput Mater Sci 28:155–168CrossRefGoogle Scholar
  33. Kung HH, Kung MC, Costello CK (2003) Supported Au catalysts for low temperature CO oxidation. J Catal 216:425–432CrossRefGoogle Scholar
  34. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using gold catalysts. Chem Commun 18:2058CrossRefGoogle Scholar
  35. Li JG, Ishigaki T, Sun XD (2007) Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J Phys Chem C 111:4969–4976CrossRefGoogle Scholar
  36. Lin C, Wen G, Liang A, Jiang Z (2013) A new resonance Rayleigh scattering method for the determination of trace O3 in air using rhodamine 6G as probe. J RSC Adv 3:6627–6630CrossRefGoogle Scholar
  37. Liu J, Liu Q, Fang P, Pan C, Xiao W (2012) First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles. J Appl Surf Sci 258:8312–8318CrossRefGoogle Scholar
  38. Molina LM, Hammer B (2005) Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl Catal A Gen 291:21–31CrossRefGoogle Scholar
  39. Molina LM, Rasmussen MD, Hammer B (2004) Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2 (110). J Chem Phys 120(16):7673CrossRefGoogle Scholar
  40. Norskov JK (2002) Catalytic CO oxidation by a gold nanoparticle: a density functional study. J Am Chem Soc 124:11262–11263CrossRefGoogle Scholar
  41. Okumura M, Tsubota S, Haruta M (2003) Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J Mol Catal A Chem 199:73–84CrossRefGoogle Scholar
  42. Otoufi MK, Shahtahmasebebi N, Kompany A, Goharshadi E (2014) Systematic growth of Gold nanoseeds on silica for silica@gold core-shell nanoparticles and investigation of optical properties. Int J Nano Dimens 5:525–531Google Scholar
  43. Ozaki T (2003) Variationally optimized atomic orbitals for large-scale electronic structures. J Phys Rev B 67:155108CrossRefGoogle Scholar
  44. Ozaki T, Kino H (2004) Numerical atomic basis orbitals from H to Kr. J Phys Rev B 69:195113CrossRefGoogle Scholar
  45. Perdew JP, Burke K, Ernzerhof M (1981) Generalized gradient approximation made simple. J Phys Rev Letts 78:1396CrossRefGoogle Scholar
  46. Reddy MA, Kishore MS, Pralong V, Caignaert V, Varadaraju UV (2006) Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2. Electrochem Commun 8(8):1299–1303CrossRefGoogle Scholar
  47. Rodriguez JA, Liu G, Jirsak T, Hrbek J, Chang ZP, Dvorak J, Maiti A (2002) Activation of gold on titania:  adsorption and reaction of SO2 on Au/TiO2 (110). J Am Chem Soc 124:5242CrossRefGoogle Scholar
  48. Rumaiz AK, Woicik JC, Cockayne E, Lin HY, Jaffari GH, Shah SI (2009) Oxygen vacancies in N doped anatase TiO2: experiment and first-principles calculations. J Appl Phys Letts 95:262111CrossRefGoogle Scholar
  49. Salama T, Ohnishi R, Shido T, Ichikawa M (1996) Highly selective catalytic reduction of NO by H2 over Au 0 and Au (I) impregnated in NaY zeolite catalysts. J Catal 162(2):169–178CrossRefGoogle Scholar
  50. Shibata Y, Irie H, Ohmori M, Nakajima A, Watanabe T, Hashimoto K (2007) Comparison of photochemical properties of brookite and anatase TiO2 films. Phys Chem Chem Phys 6:1359–1362CrossRefGoogle Scholar
  51. The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site
  52. Vittadini A, Selloni A (2002) Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: a density functional study. J Chem Phys 117:353–361CrossRefGoogle Scholar
  53. Wu C, Chen M, Skelton AA, Cummings PT, Zheng T (2013) Adsorption of arginine–glycine–aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation. ACS Appl Mater Interfaces 5:2567–2579CrossRefGoogle Scholar
  54. Wyckoff RWG (1972) Crystal structures, 2nd edn. Interscience Publishers, New YorkGoogle Scholar
  55. Zuas O, Budiman H, Hamim N (2013) Anatase TiO2 and mixed M-anatase TiO2 (M = CeO2 or ZrO2) nano powder: synthesis and characterization. Int J Nano Dimens 4(1):7–12Google Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Molecular Simulation Laboratory (MSL)Azarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Computational Nanomaterials Research GroupAzarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Department of Chemistry, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations