Advertisement

Surface photochemical modification of TiO2 nanotube/Ti plates for photocatalytic elimination of methylene orange dye

  • M. FarajiEmail author
  • A. Abedini
Original Paper

Abstract

A facile strategy has been employed to fabricate efficient TiO2 nanotubes/Ti plate for photocatalyst application via photochemical modification with benzene. Microstructure studies show that benzene with formation of carbonaceous polymeric deposits has been uniformly grown on the walls of TiO2 nanotubes/Ti plates. The results of photocatalytic experiments demonstrate that the plates modified by benzene are more efficient than bare TiO2 nanotubes/Ti for the photocatalytic degradation of methylene orange (MO) dye. The new obtained plates can be recycled 4 times, while remaining at 89.25% MO degradation ratio. The enhanced photocatalytic performance was attributed to the increased separation rate of photogenerated charge carriers and adsorption efficiency of MO by modified electrode.

Keywords

Photochemical modification TiO2 nanotubes/Ti Benzene Methylene orange Photocatalyst 

Notes

Acknowledgements

The authors wish to express thanks to the office of vice chancellor of research of Urmia University for the financial support.

References

  1. Bui TD, Kimura A, Ikeda S, Matsumura M (2010) Lowering of photocatalytic activity of TiO2 particles during oxidative decomposition of benzene in aerated liquid. Appl Catal B 94:186–191CrossRefGoogle Scholar
  2. Chang CT, Wang JJ, Ouyang T, Zhang Q, Jing YH (2015) Photocatalytic degradation of acetaminophen in aqueous solutions by TiO2/ZSM-5 zeolite with low energy irradiation. Mat Sci Eng B Adv 196:53–60CrossRefGoogle Scholar
  3. Cheng X, Liu H, Chen Q, Li J, Wang P (2013) Construction of N, S codoped TiO 2 NCs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim Acta 103:134–142CrossRefGoogle Scholar
  4. Das L, Barodia SK, Sengupta S, Basu JK (2015) Aqueous degradation kinetics of pharmaceutical drug diclofenac by photocatalysis using nanostructured titania–zirconia composite catalyst. Int J Environ Sci Technol 12:317–326CrossRefGoogle Scholar
  5. Deng Y, Tang L, Zeng G, Dong H, Yan M, Wang J, Hu W, Wang J, Zhou Y, Tang J (2016) Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere. Appl Surf Sci 387:882–893CrossRefGoogle Scholar
  6. Diak M, Klein M, Klimczuk T, Lisowski W, Remita H, Zaleska-Medynska A, Grabowska E (2017) Photoactivity of decahedral TiO2 loaded with bimetallic nanoparticles: Degradation pathway of phenol-1-13 C and hydroxyl radical formation. Appl Catal B Environ 200:56–71CrossRefGoogle Scholar
  7. Dong Y, Tang D, Li C (2014) Photocatalytic oxidation of methyl orange in water phase by immobilized TiO2-carbon nanotube nanocomposite photocatalyst. Appl Surf Sci 296:1–7CrossRefGoogle Scholar
  8. Faraji M, Moghadam PN, Hasanzadeh R (2016) Fabrication of binder-free polyaniline grafted multiwalled carbon nanotube/TiO2 nanotubes/Ti as a novel energy storage electrode for supercapacitor applications. Chem Eng J 304:841–851CrossRefGoogle Scholar
  9. Li SX, Zheng FY, Liu XL, Wu F, Deng NS, Yang JH (2005) Photocatalytic degradation of p-nitrophenol on nanometer size titanium dioxide surface modified with 5-sulfosalicylic acid. Chemosphere 61:589–594CrossRefGoogle Scholar
  10. Mazierski P, Nischk M, Gołkowska M, Lisowski W, Gazda M, Winiarski MJ, Klimczuk T, Zaleska-Medynska A (2016) Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: the effect of applied voltage, anodization time and amount of nitrogen dopant. Appl Catal B Environ 196:77–88CrossRefGoogle Scholar
  11. Mohaghegh N, Faraji M, Gobal F, Gholami MR (2015) Electrodeposited multi-walled carbon nanotubes on Ag-loaded TiO2 nanotubes/Ti plates as a new photocatalyst for dye degradation. RSC Adv 5:44840–44846CrossRefGoogle Scholar
  12. Mumjitha M, Raj V (2015) Electrochemical synthesis, structural features and photoelectrocatalytic activity of TiO2–SiO2 ceramic coatings on dye degradation. Mat Sci Eng B Adv 198:62–73CrossRefGoogle Scholar
  13. Nejman EK, Wanag A, Kowalczyk Ł, Tryba B, Kapica-Kozar J, Morawski AW (2015) The photocatalytic performance of benzene-modified TiO2 photocatalysts under UV-vis light irradiation. J Adv Oxid Technol 18:204–210Google Scholar
  14. Ngoh YS, Nawi MA (2016) Role of bentonite adsorbent sub-layer in the photocatalytic-adsorptive removal of methylene blue by the immobilized TiO2/bentonite system. Int J Environ Sci Technol 13:907–926CrossRefGoogle Scholar
  15. Pang YL, Lim S, Ong HC, Chong WT (2014) A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts. Appl Catal A Gen 481:127–142CrossRefGoogle Scholar
  16. Rajasekar K, Thennarasu S, Rajesh R, Abirami R, Ameen KB, Ramasubbu A (2013) Preparation of mesoporous TiO2/CNT nanocomposites by synthesis of mesoporous titania via EISA and their photocatalytic degradation under visible light irradiation. Solid State Sci 26:45–52CrossRefGoogle Scholar
  17. Ramakrishnan A, Neubert S, Mei B, Strunk J, Wang L, Bledowski M, Muhler M, Beranek R (2012) Enhanced performance of surface-modified TiO2 photocatalysts prepared via a visible-light photosynthetic route. Chem Commun 48:8556–8558CrossRefGoogle Scholar
  18. Sajan CP, Naik A, Girish HN (2017) Hydrothermal fabrication of WO3-modified TiO2 crystals and their efficiency in photocatalytic degradation of FCF. Int J Environ Sci Technol.  https://doi.org/10.1007/s13762-016-1239-1 Google Scholar
  19. Shun-Xing L, Feng-Ying Z, Wen-Lian C, Ai-Qin H, Yu-Kun X (2006) Surface modification of nanometer size TiO2 with salicylic acid for photocatalytic degradation of 4-nitrophenol. J Hazard Mater 135:431–436CrossRefGoogle Scholar
  20. Wang D, Xu Y, Sun F, Zhang Q, Wang P, Wang X (2016) Enhanced photocatalytic activity of TiO2 under sunlight by MoS 2 nanodots modification. Appl Surf Sci 377:221–227CrossRefGoogle Scholar
  21. Yan J, Zhou F (2011) TiO2 nanotubes: structure optimization for solar cells. J Mater Chem 21:9406–9418CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry FacultyUrmia UniversityUrmiaIran
  2. 2.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations