Advertisement

Kinetic and equilibrium studies on the removal of 14C-ethion residues from wastewater by copper-based metal–organic framework

  • R. M. Abdelhameed
  • H. Abdel-Gawad
  • C. M. Silva
  • J. Rocha
  • B. Hegazi
  • A. M. S. Silva
Original Paper

Abstract

There are compelling economic and environmental reasons to remove pesticides from wastewater because they are toxic and carcinogenic. The effectiveness of copper-based metal–organic framework (Cu-BTC) for adsorbing the insecticide 14C-ethion from wastewater has been studied as function of contact time, adsorbent dosage, temperature and pH. 14C-ethion/Cu-BTC isotherms exhibit two plateaus (BET type IV) and are reliably represented by Brunauer–Deming–Deming–Teller and Zhu–Gu models, with deviations of only 1.99 and 3.95%, respectively. The removal curve measured under batch operation is well represented by a pseudo-first-order equation, yielding results equivalent to the theoretical linear driving force model of Glueckauf. At pH 7, 75 mg L−1 ethion concentration, 150 min, 25 °C and 0.425 g L−1 Cu-BTC dose, the sorbent capacity is ca. 122 mg g−1. Moreover, Cu-BTC has a good stability after six adsorptions cycles. Finally, our results disclose the fundamental understanding of the adsorption mechanism: the ethion molecule coordinates to two copper(II) atoms across the metal–organic framework channel via the phosphoryl (P–O) group.

Keywords

Adsorption mechanism Copper-based metal–organic framework Ethion Kinetics Modeling Type IV isotherm 

Notes

Acknowledgements

The authors would like to thank the help of Prof. Dr. H. Kamel, Radioisotopes Department, Atomic Energy Authority, Cairo, Egypt, in the radioactivity measurements. This work was developed within the scope of the projects CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013) and UI QOPNA (Ref. FCT UID/QUI/00062/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.

References

  1. Abdel-Gawad H, Abdelhameed RM, Elmesalamy AM, Hegazi B (2011) Distribution and elimination of 14C-ethion insecticide in chamomile flowers and oil. Phosphorus Sulfur Silicon 186:2122–2134. doi: 10.1080/10426507.2011.588506 CrossRefGoogle Scholar
  2. Abdelhameed RM, Abdel-Gawad H, Elshahat M, Emam HE (2016) Cu–BTC@cotton composite: design and removal of ethion insecticide from water. RSC Adv 6:42324–42333. doi: 10.1039/C6RA04719J CrossRefGoogle Scholar
  3. Abdelhameed RM, Emam HE, Rocha J, Silva AMS (2017) Cu-BTC metal–organic framework natural fabrics composites for fuel purification. Fuel Process Technol 159:306–312. doi: 10.1016/j.fuproc.2017.02.001 CrossRefGoogle Scholar
  4. Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ahmad A (2010) Removal of pesticides from water and wastewater by different adsorbents: a review. J Environ Sci Health Part C 28:231–271. doi: 10.1080/10590501.2010.525782 CrossRefGoogle Scholar
  5. Aniceto JPS, Silva CM (2015) Preparative chromatography: batch and continuous. In: Anderson JL, Berthod A, Pino V, Stalcup A (eds) Analytical separation science, vol 5, Chapter 4. Wiley, New York, pp 1207–1313Google Scholar
  6. Asfaram A, Ghaedi M, Agarwal S (2015) Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface. RSC Adv 5:18438–18450. doi: 10.1039/C4RA15637D CrossRefGoogle Scholar
  7. Bae G-T, Dellinger B, Hall RW (2011) Density functional calculation of the structure and electronic properties of CunOn (n = 1–8) clusters. J Phys Chem A 115:2087–2095. doi: 10.1021/jp104177q CrossRefGoogle Scholar
  8. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der waals adsorption of gases. J Am Chem Soc 62:1723–1732. doi: 10.1021/ja01864a025 CrossRefGoogle Scholar
  9. Danmaliki GI, Saleh TA (2017) Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon. Chem Eng J 307:914–927. doi: 10.1016/j.cej.2016.08.143 CrossRefGoogle Scholar
  10. Danmaliki GI, Saleh TA, Shamsuddeen AA (2017) Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon. Chem Eng J 313:993–1003. doi: 10.1016/j.cej.2016.10.141 CrossRefGoogle Scholar
  11. Dehghani MH, Niasar ZS, Mehrnia MR, Shayeghi M, Al-Ghouti MA, Heibati B, McKay G, Yetilmezsoy K (2017) Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes. Chem Eng J 310:22–32. doi: 10.1016/j.cej.2016.10.057 CrossRefGoogle Scholar
  12. Do DD (1998) Adsorption analysis: equilibrium kinetics. Imperial College Press, LondonGoogle Scholar
  13. Ebadi A, Mohammadzadeh JSS, Khudiev A (2009) What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 15:65–73. doi: 10.1007/s10450-009-9151-3 CrossRefGoogle Scholar
  14. Elwakeel KZ, Yousif AM (2010) Adsorption of malathion on thermally treated egg shell material. Water Sci Technol 61:1035–1041. doi: 10.2166/wst.2010.005 CrossRefGoogle Scholar
  15. Foster LJR, Kwan BH, Vancov T (2004) Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiol Lett 240(1):49–53. doi: 10.1016/j.femsle.2004.09.010 CrossRefGoogle Scholar
  16. Girods P, Dufour A, Fierro V, Rogaume Y, Rogaume C, Zoulalian A, Celzard A (2009) Activated carbons prepared from wood particleboard wastes: characterization and phenol adsorption capacities. J Hazard Mater 166:491–501. doi: 10.1016/j.jhazmat.2008.11.047 CrossRefGoogle Scholar
  17. Glueckauf E (1955) Theory of chromatography—Part X. Formulae for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551. doi: 10.1039/TF9555101540 CrossRefGoogle Scholar
  18. Glueckauf E, Coates J (1947) Theory of chromatography—part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. J Chem Soc 1315–1321. doi: 10.1039/JR9470001315
  19. Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Agarwal S, Gupta VK (2017) Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photocatalysts for degradation of textile dyes. J Photochem Photobiol B Biol 173:43–49. doi: 10.1016/j.jphotobiol.2017.05.027 CrossRefGoogle Scholar
  20. Gupta VK, Jain C, Ali I, Chandra S, Agarwal S (2002) Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res 36:2483–2490. doi: 10.1016/S0043-1354(01)00474-2 CrossRefGoogle Scholar
  21. Gupta VK, Tyagi I, Agarwal S, Sadegh H, Shahryari-ghoshekandi R, Yari M, Yousefi-Nejat O (2015) Experimental study of surfaces of hydrogel polymers HEMA, HEMA–EEMA–MA, and PVA as adsorbent for removal of azo dyes from liquid phase. J Mol Liq 206:129–136. doi: 10.1016/j.molliq.2015.02.015 CrossRefGoogle Scholar
  22. Gupta VK, Saravanan R, Agarwal S, Gracia F, Khan MM, Qin J, Mangalaraja RV (2017) Degradation of azo dyes under different wavelengths of UV light with chitosan–SnO2 nanocomposites. J Mol Liq 232:423–430. doi: 10.1016/j.molliq.2017.02.095 CrossRefGoogle Scholar
  23. Habila MA, Alothman ZA, Al-Tamrah SA, Ghafar AA, Soylak M (2015) Activated carbon from waste as an efficient adsorbent for malathion for detection and removal purposes. J Ind Eng Chem 32:336–344. doi: 10.1016/j.jiec.2015.09.009 CrossRefGoogle Scholar
  24. Hasan Z, Jhung SH (2015) Removal of hazardous organics from water using metal–organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J Hazardous Mater 283:329–339. doi: 10.1016/j.jhazmat.2014.09.046 CrossRefGoogle Scholar
  25. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. doi: 10.1016/S0032-9592(98)00112-5 CrossRefGoogle Scholar
  26. Hoffmann I, Oppel C, Gernert U, Barreleiro P, Von Rybinski W, Gradzielski M (2012) Adsorption isotherms of cellulose-based polymers onto cotton fibers determined by means of a direct method of fluorescence spectroscopy. Langmuir 28:7695–7703. doi: 10.1021/la300192q CrossRefGoogle Scholar
  27. Huang MR, Peng QY, Li XG (2006) Rapid and effective adsorption of lead ions on fine poly(phenylenediamine) microparticles. Chem Eur J 12:4341–4350. doi: 10.1002/chem.200501070 CrossRefGoogle Scholar
  28. Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal–organic frameworks (MOFs): a review. J Hazard Mater 244:444–456. doi: 10.1016/j.jhazmat.2012.11.011 CrossRefGoogle Scholar
  29. Kumar P, Singh H, Kapur M, Mondal MK (2014) Comparative study of malathion removal from aqueous solution by agricultural and commercial adsorbents. J Water Process Eng 3:67–73. doi: 10.1016/j.jwpe.2014.05.010 CrossRefGoogle Scholar
  30. Largergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar 24:1–39Google Scholar
  31. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402:276–279. doi: 10.1038/46248 CrossRefGoogle Scholar
  32. Liu J, Culp JT, Natesakhawat S, Bockrath BC, Zande B, Sankar S, Garberoglio G, Johnson JK (2007) Experimental and theoretical studies of gas adsorption in Cu3(BTC)2: an effective activation procedure. J Phys Chem C 111:9305–9313. doi: 10.1021/jp071449i CrossRefGoogle Scholar
  33. Naushad M, Alothman Z, Khan M (2013) Removal of malathion from aqueous solution using De-Acidite FF-IP resin and determination by UPLC–MS/MS: equilibrium, kinetics and thermodynamics studies. Talanta 115:15–23. doi: 10.1016/j.talanta.2013.04.015 CrossRefGoogle Scholar
  34. Nile Basin Initiative—Nile basin national water quality monitoring baseline study report for Egypt (2005) Nile Basin Regional Water Quality Monitoring Baseline Study Report—FinalGoogle Scholar
  35. Qadir M, Mateo-Sagasta J, Jiménez B, Siebe C, Siemens J, Hanjra MA (2015) Environmental risks and cost-effective risk management in wastewater use systems. In: Drechsel P, Qadir M, Wichelns D (eds) Wastewater—economic asset in an urbanizing world. Springer, Netherlands, pp 55–72Google Scholar
  36. Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta VK (2016) Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem Eng J 284:687–697. doi: 10.1016/j.cej.2015.08.131 CrossRefGoogle Scholar
  37. Rodrigues AE, Silva CM (2016) What’s wrong with Lagergreen pseudo first order model for adsorption kinetics? Chem Eng J 306:1138–1142. doi: 10.1016/j.cej.2016.08.055 CrossRefGoogle Scholar
  38. Rowsell JL, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J Am Chem Soc 128:1304–1315. doi: 10.1021/ja056639q CrossRefGoogle Scholar
  39. Sainio T, Turku I (2010) Adsorption of cationic surfactants on a neutral polymer adsorbent: investigation of the interactions by using mathematical modeling. Coll Surf A 358:57–67. doi: 10.1016/j.colsurfa.2010.01.031 CrossRefGoogle Scholar
  40. Saleh TA, Sarı A, Tuzen M (2017) Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chem Engin J 307:230–238. doi: 10.1016/j.cej.2016.08.070 CrossRefGoogle Scholar
  41. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033. doi: 10.1016/j.molliq.2016.06.074 CrossRefGoogle Scholar
  42. Stavila V, Talin A, Allendorf M (2014) MOF-based electronic and opto-electronic devices. Chem Soc Rev 43:5994–6010. doi: 10.1039/c4cs00096j CrossRefGoogle Scholar
  43. Tanner PA, Leung K-H (1996) Spectral interpretation and qualitative analysis of organophosphorus pesticides using ft-raman and ft-infrared spectroscopy. Appl Spectrosc 50:565–571CrossRefGoogle Scholar
  44. Vishnyakov A, Ravikovitch PI, Neimark AV, Bülow M, Wang QM (2003) Nanopore structure and sorption properties of Cu–BTC metal–organic framework. Nano Lett 3:713–718. doi: 10.1021/nl0341281 CrossRefGoogle Scholar
  45. Younis SA, Ghobashy MM, Samy M (2017) Development of aminated poly(glycidyl methacrylate) nanosorbent by green gamma radiation for phenol and malathion contaminated wastewater treatment. J Environ Chem Eng 5:2325–2336. doi: 10.1016/j.jece.2017.04.024 CrossRefGoogle Scholar
  46. Zhang T, Lin W (2014) Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993. doi: 10.1039/C4CS00103F CrossRefGoogle Scholar
  47. Zhu B-Y, Gu T (1989) General isotherm equation for adsorption of surfactants at solid/liquid interfaces. Part 1. Theoretical. J Chem Soc Faraday Trans 1(85):3813–3817. doi: 10.1039/F19898503813 CrossRefGoogle Scholar
  48. Zhu B-Y, Gu T, Zhao X (1989) General isotherm equation for adsorption of surfactants at solid/liquid interfaces. Part 2. Applications. J Chem Soc Faraday Trans 1(85):3819–3824. doi: 10.1039/F19898503819 CrossRefGoogle Scholar
  49. Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J, Gu J (2014) Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UIO-67. ACS Appl Mater Interfaces 7:223–231. doi: 10.1021/am5059074 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  1. 1.Applied Organic Chemistry DepartmentNational Research CentreDokki, GizaEgypt
  2. 2.Department of Chemistry, CICECOUniversity of AveiroAveiroPortugal
  3. 3.Department of Chemistry, QOPNAUniversity of AveiroAveiroPortugal

Personalised recommendations