Measuring and modeling metal ions adsorption on αAl2O3, SiO2 and TiO2 nanoparticles in the presence of organic ligands

  • E. Naderi PeikamEmail author
  • M. Jalali
Original Paper


Nanoparticles (NPs) can be used to remove metal ions from aqueous solutions. However, removal efficiency of metal ions using NPs is influenced by organic ligands. The aims of this study were to investigate cadmium (Cd), nickel (Ni) and zinc (Zn) removal using αAl2O3, SiO2 and TiO2 NPs, to study the effect of organic ligands on metal adsorption and to simulate metal removal in mixed metal–organic systems using PHREEQC program. The experiments were performed in the pH range 2.0–8.0, solid–solution ratio 0.5–10 g L−1, contact time 10 min to 24 h and the citric and malic concentration from 0.2 to 2 mM. Adsorption of metal ions increased with increasing initial pH, adsorbent dosage and contact time. In the presence of citric acid adsorption of Cd on SiO2 NPs decreased noticeably with increasing concentration of citric acid from 0 to 2 mM while an increase in adsorption was observed when 0.2 mM malic acid added to SiO2 NPs. The adsorption of Ni in the presence of citric acid was inhibited, and low malic acid concentration (0.2 mM) promoted Ni adsorption on SiO2 and αAl2O3 NPs. These findings reveal that metal adsorption in the presence of organic ligands was not constant. A double-layer model and the NICA-DONNAN model were used to simulate the adsorption behavior. The results showed that monodentate complexes provide the best fit to the data and that the model could be used as a tool to assess adsorption of metal ions on NPs in the presence of organic ligands.


Citric acid PHREEQC Malic acid Surface complexation modeling Vminteq 



We are thankful to Department of Soil Science, College of Agriculture, Bu-Ali Sina University, where this research was conducted.

Supplementary material

13762_2017_1569_MOESM1_ESM.doc (523 kb)
Supplementary material 1 (DOC 523 kb)


  1. Abendroth RP (1970) Behavior of a pyrogenic silica in simple electrolytes. J Colloid Interface Sci 34(4):591–596CrossRefGoogle Scholar
  2. Abollino O, Giacomino A, Malandrino M, Mentasti E (2008) Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci 38:227–236. doi: 10.1016/j.clay.2007.04.002 CrossRefGoogle Scholar
  3. Afkhami A, Moosavi R (2010) Adsorptive removal of Congo red a carcinogenic textile dye from aqueous solutions by maghemite nanoparticles. J Hazard Mater 174:398–403. doi: 10.1016/j.jhazmat.2009.09.066 CrossRefGoogle Scholar
  4. Agarwal S, Tyagi I, Gupta VK, Dehghani MH, Jaafari J, Balarak D, Asif M (2016) Rapid removal of noxious nickel (II) using novel γ-alumina nanoparticles and multiwalled carbon nanotubes: kinetic and isotherm studies. J Mol Liq 224:618–623. doi: 10.1016/j.molliq.2016.10.032 CrossRefGoogle Scholar
  5. Antoniadis V, Tsadilas CD, Ashworth DJ (2007) Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil. Chemosphere 68:489–494. doi: 10.1016/j.chemosphere.2006.12.062 CrossRefGoogle Scholar
  6. Balistrieri LS, Murray JW (1982) The adsorption of Cu Pb Zn and Cd on goethite from major ion seawater. Geochim Cosmochim Acta 46:1253–1265. doi: 10.1016/0016-7037(82)90010-2 CrossRefGoogle Scholar
  7. Benjamin MM, Leckie JO (1981) Conceptual model for metal ligand–surface interactions during adsorption. Environ Sci Technol 15:1050–1057. doi: 10.1021/es00091a003 CrossRefGoogle Scholar
  8. Bleam WF, McBride MB (1985) Cluster formation versus isolated-site adsorption a study of Mn(II) and Mg(II) adsorption on boehmite and goethite. J Colloid Interface Sci 103:124–132. doi: 10.1016/0021-9797(85)90083-9 CrossRefGoogle Scholar
  9. Boily J-F, Fein JB (1996) Experimental study of cadmium-citrate co-adsorption onto α-Al2O3. Geochim Cosmochim Acta 60:2929–2938. doi: 10.1016/0016-7037(96)00131-7 CrossRefGoogle Scholar
  10. Boparai HK, Joseph M, O’Carroll DM (2013) Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis effects of solution chemistry and surface complexation modeling. Environ Sci Pollut Res 20:6210–6221. doi: 10.1007/s11356-013-1651-8 CrossRefGoogle Scholar
  11. Brown PA, Gill SA, Allen SJ (2000) Metal removal from wastewater using peat. Water Res 34:3907–3916. doi: 10.1016/S0043-1354(00)00152-4 CrossRefGoogle Scholar
  12. Chang AC, Crowley DE (2004) Assessing bioavailability of metals in biosolids-treated soils. IWE, LondonGoogle Scholar
  13. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. doi: 10.1016/jwatres201002039 CrossRefGoogle Scholar
  14. Collins CR, Ragnarsdottir KV, Sherman DM (1999) Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite. Geochim Cosmochim Acta 63:2989–3002. doi: 10.1016/S0016-7037(99)00226-4 CrossRefGoogle Scholar
  15. Collins JM, Uppal R, Incarvito CD, Valentine AM (2005) Titanium(IV) citrate speciation and structure under environmentally and biologically relevant conditions. Inorg Chem 44:3431–3440. doi: 10.1021/ic048158y CrossRefGoogle Scholar
  16. Cozzolino A, Conte P, Piccolo A (2001) Conformational changes of humic substances induced by some hydroxy- keto- and sulfonic acids. Soil Biol Biochem 33:563–571. doi: 10.1016/S0038-0717(00)00196-6 CrossRefGoogle Scholar
  17. Davis AP, Bhatnagar V (1995) Adsorption of cadmium and humic acid onto hematite. Chemosphere 30:243–256. doi: 10.1016/0045-6535(94)00387-A CrossRefGoogle Scholar
  18. Davydov VY, Kiselev AV, Zhuravlev LT (1964) Study of the surface and bulk hydroxyl groups of silica by infra-red spectra and D2O-exchange. T Faraday Soc 60:2254–2264. doi: 10.1039/TF9646002254 CrossRefGoogle Scholar
  19. Delolme C, Hébrard-Labit C, Spadini L, Gaudet JP (2004) Experimental study and modeling of the transfer of zinc in a low reactive sand column in the presence of acetate. J Contam Hydrol 70:205–224. doi: 10.1016/j.jconhyd.2003.09.002 CrossRefGoogle Scholar
  20. Ding YZ, Song ZG, Feng RW, Guo JK (2014) Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils. Int J Environ Sci Technol 11:33–42. doi: 10.1007/s13762-013-0433-7 CrossRefGoogle Scholar
  21. Dove PM, Rimstidt JD (1994) Silica–water interactions. In: Heavy PJ, Prewitt CT, Gibbs GV (eds) Silica physical behavior, geochemistry and materials applications. Rev Mineral Geochem 29:259–308Google Scholar
  22. Efecan N, Shahwan T, Eroğlu AE, Lieberwirth I (2009) Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI). Desalination 249:1048–1054. doi: 10.1016/j.desal.2009.06.054 CrossRefGoogle Scholar
  23. Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn and Ni to titanium dioxide nanoparticles: effect of particles size solid concentration and exhaustion. Environ Sci Pollut Res 18:386–395. doi: 10.1007/s11356-010-0382-3 CrossRefGoogle Scholar
  24. Fendorf SE, Li G, Gunter ME (1996) Micromorphologies and stabilities of chromium (III) surface precipitates elucidated by scanning force microscopy. Soil Sci Soc Am J 60:99–106. doi: 10.2136/sssaj1996.03615995006000010017x CrossRefGoogle Scholar
  25. Fiol N, Villaescusa I (2009) Determination of sorbent point zero charge: usefulness in sorption studies. Environ Chem Lett 7:79–84. doi: 10.1007/s10311-008-0139-0 CrossRefGoogle Scholar
  26. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. doi: 10.1016/j.jenvman.2010.11.011 CrossRefGoogle Scholar
  27. Ghaedi M, Mosallanejad N (2014) Study of competitive adsorption of malachite green and sunset yellow dyes on cadmium hydroxide nanowires loaded on activated carbon. J Ind Eng Chem 20:1085–1096. doi: 10.1016/j.jiec.2013.06.046 CrossRefGoogle Scholar
  28. Girvin DC, Classman PL, Bolton H Jr (1993) Adsorption of aqueous cobalt ethylene iaminetetracetate by γ-Al2O3. Soil Sci Soc Am J 57:47–56CrossRefGoogle Scholar
  29. Gomes Teixeira LS, Costa ACS, Assis JCR, Ferreira SLC, Korn M (2001) Solid phase spectrophotometry for the determination of cobalt in pharmaceutical preparations. Microchim Acta 137:29–33. doi: 10.1007/s006040170024 CrossRefGoogle Scholar
  30. Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522. doi: 10.1016/j.jhazmat.2008.09.072 CrossRefGoogle Scholar
  31. Harter RD, Naidu R (2001) An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Sci Soc Am J 65:597–612. doi: 10.2136/sssaj2001.653597x CrossRefGoogle Scholar
  32. Hayes KF, Redden G, Ela W, Leckie JO (1991) Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data. J Colloid Interface Sci 142:448–469. doi: 10.1016/0021-9797(91)90075-J CrossRefGoogle Scholar
  33. Heidari A, Younesi H, Mehraban Z (2009) Removal of Ni(II) Cd(II) and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. J Chem Educ 153:70–79. doi: 10.1016/j.cej.2009.06.016 Google Scholar
  34. Ho YS, Mackay G (1998) Kinetic models for the adsorption of dye from aqueous solutions by wood. J Environ Sci Health 76:183–187. doi: 10.1205/095758298529326 Google Scholar
  35. Ho YS, John Wase DA, Forster CF (1995) Batch nickel removal from aqueous-solution by sphagnum moss peat. Water Res 29:1327–1332. doi: 10.1016/0043-1354(94)00236-Z CrossRefGoogle Scholar
  36. Holmberg JP (2006) Competitive adsorption and displacement behaviour of heavy metals on peat. Master of Science Thesis in Applied Environmental Measurement Techniques University of GothenburgGoogle Scholar
  37. Houghton RP (1979) Metal complexes in organic chemistry. Cambridge University, CambridgeGoogle Scholar
  38. Hu J, Shipley HJ (2012) Evaluation of desorption of Pb (II), Cu (II) and Zn (II) from titanium dioxide nanoparticles. Sci Total Environ 431:209–220CrossRefGoogle Scholar
  39. Hu HQ, Liu HL, He JZ, Huang QY (2007) Effect of selected LMWOAs on cadmium adsorption by variable- and permanent-charge soils. Pedosphere 17:117–123CrossRefGoogle Scholar
  40. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331CrossRefGoogle Scholar
  41. Huang QY, Zhao ZH, Chen WL (2003) Effects of several low molecular weight LMWOAs and phosphate on the adsorption of acid phosphatase by soil colloids and minerals. Chemosphere 52:571–579. doi: 10.1016/S0045-6535(03)00238-8 CrossRefGoogle Scholar
  42. Huang L, Hu H, Li X, Li LY (2010) Influences of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite. Appl Clay Sci 49:281–287. doi: 10.1016/j.clay.2010.06.005 CrossRefGoogle Scholar
  43. Jardine PM, Jacobs GK, O’Dell JD (1993) Unsaturated transport processes in undisturbed heterogeneous porous media: II Co-contaminants. Soil Sci Sot Am J 57:954–962. doi: 10.2136/sssaj1993.03615995005700040013x CrossRefGoogle Scholar
  44. Kaiser K, Guggenberger G, Zech W (1996) Sorption of DOM and DOM fractions to forest soils. Geoderma 74:281–303. doi: 10.1016/S0016-7061(96)00071-7 CrossRefGoogle Scholar
  45. Kantar C, Ikizoglu G, Koleli N, Kaya O (2009) Modeling Cd(II) adsorption to heterogeneous subsurface soils in the presence of citric acid using a semi-empirical surface complexation approach. J Contam Hydrol 110:100–109. doi: 10.1016/j.jconhyd.2009.09.003 CrossRefGoogle Scholar
  46. Karami H (2013) Heavy metal removal from water by magnetite nanorods. Chem Eng J 219:209–216. doi: 10.1016/j.cej.2013.01.022 CrossRefGoogle Scholar
  47. Keyhanian F, Shariati S, Faraji M, Hesabi M (2011) Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arab J Chem 9:348–354. doi: 10.1016/j.arabjc.2011.04.012 CrossRefGoogle Scholar
  48. Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification preparation and applications (with emphasis on aqueous media). Chem Rev 113:7728–7768. doi: 10.1021/cr400086v CrossRefGoogle Scholar
  49. Lackovic K, Johnson BB, Angove MJ, Wells JD (2003) Modeling the adsorption of citric acid onto Muloorina illite and related clay minerals. J Colloid Interface Sci 267:49–59. doi: 10.1016/S0021-9797(03)00693-3 CrossRefGoogle Scholar
  50. Lackovic K, Angove MJ, Wells JD, Johnson BB (2004) Modeling the adsorption of Cd(II) onto goethite in the presence of citric acid. J Colloid Interface Sci 269:37–45. doi: 10.1016/j.jcis.2003.08.041 CrossRefGoogle Scholar
  51. Lazaridis NK, Charalambous C (2005) Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate–goethite beads. Water Res 39:4385–4396. doi: 10.1016/j.watres.2005.09.013 CrossRefGoogle Scholar
  52. Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44:19–41. doi: 10.1016/j.bej.2008.12.009 CrossRefGoogle Scholar
  53. Madeley JD, Richmond RC (1972) A procedure for determining the concentration of hydroxyl groups on silica surfaces. Zeitschrift für anorganische und allgemeine Chemie 389:92–96. doi: 10.1002/zaac.19723890112 CrossRefGoogle Scholar
  54. Mahdavi S, Jalali M, Afkhami A (2012) Removal of heavy metals from aqueous solutions using Fe3O4, ZnO and CuO nanoparticles. J Nanopart Res 14:1–18. doi: 10.1007/s11051-012-0846-0 CrossRefGoogle Scholar
  55. McBride MB (1994) Environmental chemistry of soils. Oxford University, OxfordGoogle Scholar
  56. Mohan D, Singh KP (2005) Competitive adsorption of several organics and heavy metals on activated carbon in water. Wiley, New York, pp 107–121Google Scholar
  57. Mudunkotuwa I, Grassian VH (2010) Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: surface coverage surface speciation and its impact on nanoparticle–nanoparticle interactions. J Am Chem Soc 132:14986–14994. doi: 10.1021/ja106091q CrossRefGoogle Scholar
  58. Musić S, Ristic M (1992) Adsorption of zinc(II) on hydrous iron oxides. J Radioanal Nucl Chem 162:351–362. doi: 10.1007/BF02035395 CrossRefGoogle Scholar
  59. Naiya TK, Chowdhury P, Bhattacharya AK, Das SK (2009) Sawdust and neembark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. Chem Eng J 148:68–79. doi: 10.1016/j.cej.2008.08.002 CrossRefGoogle Scholar
  60. Nowack B, Sigg L (1996) Adsorption of EDTA and metal–EDTA complexes onto goethite. J Colloid Interface Sci 177:106–121. doi: 10.1006/jcis.1996.0011 CrossRefGoogle Scholar
  61. Pacheco S, Tapia J, Medina M, Rodriguez R (2006) Cadmium ions adsorption in simulated wastewater using structured alumina–silica nanoparticles. J Non Cryst Solids 352:5475–5481. doi: 10.1016/jjnoncrysol200609007 CrossRefGoogle Scholar
  62. Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculationsGoogle Scholar
  63. Rahmani A, Zavvar Mosavi H, Fazli M (2010) Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253:94–100. doi: 10.1007/s11356-010-0382-3 CrossRefGoogle Scholar
  64. Reuter JH, Perdue EM (1977) Importance of heavy metal-organic matter interactions in natural waters. Geochim Cosmochim Acta 41:325–334. doi: 10.1016/0016-7037(77)90240-X CrossRefGoogle Scholar
  65. Roy A, Bhattacharya J (2012) Removal of Cu(II) Zn(II) and Pb(II) from water using microwave-assisted synthesized maghemite nanotubes. Chem Eng J 211–212:493–500. doi: 10.1016/j.cej.2012.09.097 CrossRefGoogle Scholar
  66. Sahai N, Sverjensky DA (1997) Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data. Geochim et Cosmochim Acta 61:2801–2826. doi: 10.1016/S0016-7037(97)00128-2 CrossRefGoogle Scholar
  67. Schindler PW, Sposito G (1991) Surface complexation at (hydr)oxide surfaces. In: Bolt GH, De Boodt MF, Hayes MHB, McBride MB, De Strooper EBA (eds) Interactions at the soil colloid—soil solution interface. Springer, Dordrecht, pp 115–145CrossRefGoogle Scholar
  68. Serjeant EP, Dempsey B (1979) Ionization constants of organic acids in aqueous solution. Pergamon, OxfordGoogle Scholar
  69. Shan X, Lian J, Wen B (2002) Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere 47:701–710. doi: 10.1016/S0045-6535(02)00032-2 CrossRefGoogle Scholar
  70. Song J, Kong H, Jang J (2011) Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J Colloid Interface Sci 359:505–511. doi: 10.1016/j.jcis.2011.04.034 CrossRefGoogle Scholar
  71. Sonnefeld J, Löbbus M, Vogelsberger W (2001) Determination of electric double layer parameters for spherical silica particles under application of the triple layer model using surface charge density data and results of electrokinetic sonic amplitude measurements. Colloids Surf A Physicochem Eng Asp 195:215–225. doi: 10.1016/S0927-7757(01)00845-7 CrossRefGoogle Scholar
  72. Stietiya MH, Wang JJ (2014) Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands. J Environ Qual 43:498–506. doi: 10.2134/jeq2013.07.0263 CrossRefGoogle Scholar
  73. Stiglich PJ (1976) Adsorption of cadmium(II) complexes at the oxide–water interface. Dissertation University of MelbourneGoogle Scholar
  74. Stone AT, Torrents A, Smolen J, Vasudevan D, Hadley J (1993) Adsorption of organic compounds possessing ligand donor groups at the oxide/water interface. Environ Sci Technol 27:895–909. doi: 10.1021/es00042a012 CrossRefGoogle Scholar
  75. Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—a review. Geoderma 99:169–198. doi: 10.1016/S0016-7061(00)00102-6 CrossRefGoogle Scholar
  76. Strom L (1997) Root exudation of LMWOAs: importance to nutrient availability and the calcifuge and calcicole behavior of plants. Oikos 80:459–466. doi: 10.2307/3546618 CrossRefGoogle Scholar
  77. Sumner ME (2000) Handbook of soil science. CRC Press. Taylor & Francis groups, Boca Raton, LondonGoogle Scholar
  78. Sverjensky DA (2005) Prediction of surface charge on oxides in salt solutions: Revisions for 1:1 (M+L electrolytes. Geochimica et Cosmochimica Acta 69:225–257CrossRefGoogle Scholar
  79. Tan IAW, Hameed BH, Ahmad AL (2008) Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem Eng J 137:462–470. doi: 10.1016/j.cej.2007.04.031 CrossRefGoogle Scholar
  80. Thompson TL, Panayotov DA, Yates JT, Martyanov I, Klabunde K (2004) Photodecomposition of adsorbed 2-chloroethyl ethyl sulfide on TiO2: involvement of lattice oxygen. J Phys Chem B 108:17857–17865. doi: 10.1021/jp040468e CrossRefGoogle Scholar
  81. Tiller KG, Gerth J, Brummer G (1984) Relative affinities of Cd Ni and Zn for different soil clay fractions and goethite. Geoderma 34:17–35. doi: 10.1016/0016-7061(84)90003-X CrossRefGoogle Scholar
  82. Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ, Kong LX (2008) Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93:1–9. doi: 10.1016/j.hydromet.2008.02.009 CrossRefGoogle Scholar
  83. Wang J, Evangelou VP (1995) Metal tolerance aspects of plant cell walls and vacuoles. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New YorkGoogle Scholar
  84. Weisz A, Regazzoni A, Blesa M (2007) Stability of surface complexes formed at the TiO2/water interface. Croat Chem Acta 80:325–332Google Scholar
  85. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. doi: 10.1016/j.scitotenv.2012.02.023 CrossRefGoogle Scholar
  86. Yates DE (1975) The structure of the oxide/aqueous electrolyte interface. Thesis Ph.D. dissertation, University of Melbourne, p 246Google Scholar
  87. Yu HF, Zhang ZW, Hu FC (2008) Phase stabilities and photocatalytic activities of P/Zn–TiO2 nanoparticles able to operate under UV–vis light irradiation. J Alloys Compd 465:484–490. doi: 10.1016/j.jallcom.2007.10.127 CrossRefGoogle Scholar
  88. Zachara JM, Smith RW, Wobber FG (1994) Five-year plan of basic research. Cocontaminant chemistry subprogram. U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Environmental Sciences Division, United StateGoogle Scholar
  89. Zeng GM, Li X, Huang JH, Zhang C, Zhou CF, Niu J, Shi LJ, He SB, Li F (2011) Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS. J Hazard Mater 185:1304–1310. doi: 10.1016/jjhazmat201010046 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  1. 1.Department of Soil Science, College of AgricultureBu-Ali Sina UniversityHamedanIran

Personalised recommendations