Advertisement

Application of the coconut fiber in radioactive liquid waste treatment

  • R. V. P. Ferreira
  • E. A. Silva
  • R. L. S. Canevesi
  • E. G. A. Ferreira
  • M. H. T. Taddei
  • M. C. Palmieri
  • F. R. O. Silva
  • J. T. Marumo
Original Paper

Abstract

The treatment of radioactive liquid waste containing organic compounds was always a cause for concern to radioactive waste management facilities because the processes available are expensive and difficult to manage. Biosorption has been studied as a new process in simulated wastes as an alternative to treating them. Among the potential biomass, the coconut fiber has very attractive features that allow the removal of radionuclides using a low-cost biosorbent. The aim of this study was to evaluate the capacity of coconut fiber to remove uranium, americium, and cesium from real radioactive liquid organic waste. Experiments with the biosorption of these radionuclides in coconut fiber were made including (1) preparation, activation, and characterization of biomass and (2) biosorption assays. The biomass was tested in raw and activated form. Biosorption assays were performed, adding the biomass to real waste solutions. The solutions contain natural uranium, americium-241, and cesium-137. The contact times and the concentrations range were varied. The radioisotopes remaining concentration in the solutions was determined by inductively coupled plasma optical emission spectrometry and gamma spectrometry. The results were evaluated by maximum experimental sorption capacity and isotherm and kinetics ternary models. The highest sorption capacity was observed with the activated coconut fiber, with values of 2 mg/g of U (total), 70E−06 mg/g of Am-241 and 40E−09 mg/g of Cs-137. These results suggest that biosorption with activated coconut fiber can be applied in the treatment of radioactive liquid organic wastes containing uranium, americium-241, and cesium-137.

Keywords

Waste management Biosorption Isotherms Uranium Americium Cesium 

Notes

Acknowledgements

This research was supported by the Nuclear and Energy Research Institute, The National Nuclear Energy Commission and the National Council of Technological and Scientific Development.

References

  1. Ahalya N, Kanamadi RD, Ramachandra TV (2010) Removal of hexavalent chromium using coffee husk. Int J Environ Pollut 43:106–116. doi: 10.1504/IJEP.2010.035917 CrossRefGoogle Scholar
  2. Ali M (2010) Coconut fibre—a versatile material and its applications in engineering. In: Main Vol. 3. Presented at the 2nd international conference on sustainable construction materials and technologies, pp 1441–1451Google Scholar
  3. Aly Z, Luca V (2012) Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes. J Radioanal Nucl Chem 295:889–900. doi: 10.1007/s10967-012-1851-6 CrossRefGoogle Scholar
  4. Bansal M, Garg U, Singh D, Garg VK (2009) Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk. J Hazard Mater 162:312–320. doi: 10.1016/j.jhazmat.2008.05.037 CrossRefGoogle Scholar
  5. Bhaumik R, Mondal NK (2015) Adsorption of fluoride from aqueous solution by a new low-cost adsorbent: thermally and chemically activated coconut fibre dust. Clean Technol Environ Policy 17:2157–2172. doi: 10.1007/s10098-015-0937-6 CrossRefGoogle Scholar
  6. Brígida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydr Polym 79:832–838. doi: 10.1016/j.carbpol.2009.10.005 CrossRefGoogle Scholar
  7. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi: 10.1021/ja01269a023 CrossRefGoogle Scholar
  8. Carrijo OA, de Liz RS, Makishima N (2002) Fibra da casca do coco verde como substrato agrícola. Hortic Bras 20:533–535CrossRefGoogle Scholar
  9. Cazetta AL, Vargas AMM, Nogami EM, Kunita MH, Guilherme MR, Martins AC, Silva TL, Moraes JCG, Almeida VC (2011) NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem Eng J 174:117–125. doi: 10.1016/j.cej.2011.08.058 CrossRefGoogle Scholar
  10. Danish M, Hashim R, Ibrahim MNM, Rafatullah M, Sulaiman O (2012) Surface characterization and comparative adsorption properties of Cr(VI) on pyrolysed adsorbents of Acacia mangium wood and Phoenix dactylifera L. stone carbon. J Anal Appl Pyrolysis 97:19–28. doi: 10.1016/j.jaap.2012.06.001 CrossRefGoogle Scholar
  11. Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169Google Scholar
  12. Ding D-X, Liu X-T, Hu N, Li G-Y, Wang Y-D (2012) Removal and recovery of uranium from aqueous solution by tea waste. J Radioanal Nucl Chem 293:735–741. doi: 10.1007/s10967-012-1866-z CrossRefGoogle Scholar
  13. Elwakeel KZ, Atia AA, Guibal E (2014) Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin. Bioresour Technol 160:107–114. doi: 10.1016/j.biortech.2014.01.037 CrossRefGoogle Scholar
  14. Elwakeel KZ, Daher AM, Abd El-Fatah AIL, Abd El Monem H, Khalil MMH (2017) Biosorption of lanthanum from aqueous solutions using magnetic alginate beads. J Dispers Sci Technol 38:145–151. doi: 10.1080/01932691.2016.1146617 CrossRefGoogle Scholar
  15. EMBRAPA (1997) Soil analysis method manual. Centro Nacional de Pesquisa de Solos, Empresa Brasileira de Pesquisa Agropecuária, Rio De JaneiroGoogle Scholar
  16. Eroglu H, Yapici S, Nuhoglu C, Varoglu E (2009) Biosorption of Ga-67 radionuclides from aqueous solutions onto waste pomace of an olive oil factory. J Hazard Mater 172:729–738. doi: 10.1016/j.jhazmat.2009.07.054 CrossRefGoogle Scholar
  17. Feng D, Aldrich C (2004) Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy 73:1–10. doi: 10.1016/S0304-386X(03)00138-5 CrossRefGoogle Scholar
  18. Ferraz AI, Amorim C, Tavares T, Teixeira JA (2014) Chromium(III) biosorption onto spent grains residual from brewing industry: equilibrium, kinetics and column studies. Int J Environ Sci Technol 12:1591–1602. doi: 10.1007/s13762-014-0539-6 CrossRefGoogle Scholar
  19. Ferreira EGA, Ferreira RVP, Araujo LG, Taddei MHT, Dellamano JC Marumo JT (2013) Chemical analysis of radioactive mixed liquid wastes by alpha/gamma spectrometry, ICP-OES and Arsenazo III. Presented at the international nuclear atlantic conference—INAC 2013, Recife, PE, BrazilGoogle Scholar
  20. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28. doi: 10.1002/jctb.1999 CrossRefGoogle Scholar
  21. Garg U, Kaur MP, Jawa GK, Sud D, Garg VK (2008) Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. J Hazard Mater 154:1149–1157. doi: 10.1016/j.jhazmat.2007.11.040 CrossRefGoogle Scholar
  22. Gok C, Aytas S (2009) Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater 168:369–375. doi: 10.1016/j.jhazmat.2009.02.063 CrossRefGoogle Scholar
  23. Gonçalves MMM, de Mello LAO, da Costa ACA (2007) The use of seaweed and sugarcane bagasse for the biological treatment of metal-contaminated waters under sulfate-reducing conditions. Appl Biochem Biotechnol 147:97–105. doi: 10.1007/s12010-007-8091-1 CrossRefGoogle Scholar
  24. IAEA (2004) Predisposal management of organic radioactive waste, Technical reports series/International Atomic Energy Agency. International Atomic Energy Agency, ViennaGoogle Scholar
  25. Israel A, Ogali R, Akaranta O, Obot IB (2010) Removal of Cu(II) from aqueous solution using coconut (Cocosnucifera L.) coir dust. Pharma Chem 2:60–75Google Scholar
  26. Jain JS, Snoeyink VL (1973) Adsorption from bisolute systems on active carbon. J Water Pollut Control Fed 45:2463–2479Google Scholar
  27. Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104. doi: 10.1016/S0960-8524(98)00192-8 CrossRefGoogle Scholar
  28. Krishnani KK, Meng X, Boddu VM (2008) Fixation of heavy metals onto lignocellulosic sorbent prepared from paddy straw. Water Environ Res 80:2165–2174. doi: 10.2175/106143008X304785 CrossRefGoogle Scholar
  29. Liao J, Yang Y, Luo S, Liu N, Jin J, Zhang T, Zhao P (2004) Biosorption of americium-241 by immobilized Rhizopus arrihizus. Appl Radiat Isot 60:1–5. doi: 10.1016/j.apradiso.2003.10.001 CrossRefGoogle Scholar
  30. Liu N, Luo S, Yang Y, Zhang T, Jin J, Liao J (2002) Biosorption of americium-241 by Saccharomyces cerevisiae. J Radioanal Nucl Chem 252:187–191. doi: 10.1023/A:1015276813386 CrossRefGoogle Scholar
  31. Luo S, Liu N, Yang Y, Zhang T, Jin J, Liao J (2003) Biosorption of americium-241 by Candida sp. Radiochim Acta. doi: 10.1524/ract.91.6.315.20024 CrossRefGoogle Scholar
  32. Minamisawa M, Minamisawa H, Yoshida S, Takai N (2004) Adsorption behavior of heavy metals on biomaterials. J Agric Food Chem 52:5606–5611. doi: 10.1021/jf0496402 CrossRefGoogle Scholar
  33. Mishra SP, Prasad SK, Dubey RS, Mishra M, Tiwari D, Lee S-M (2007) Biosorptive behaviour of rice hulls for Cs-134 from aqueous solutions: a radiotracer study. Appl Radiat Isot 65:280–286. doi: 10.1016/j.apradiso.2006.09.007 CrossRefGoogle Scholar
  34. Monteiro RA, Yamaura M (2007) Coir pith of the green coconut in the decontamination of radioactive aqueous effluent. Presented at the international nuclear atlantic conference—INAC 2007, SantosGoogle Scholar
  35. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. doi: 10.1093/comjnl/7.4.308 CrossRefGoogle Scholar
  36. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96:1241–1248. doi: 10.1016/j.biortech.2004.10.016 CrossRefGoogle Scholar
  37. Park D, Yun Y-S, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102. doi: 10.1007/s12257-009-0199-4 CrossRefGoogle Scholar
  38. Pino GH, Souza de Mesquita LM, Torem ML, Saavedra Pinto GA (2006) Biosorption of cadmium by green coconut shell powder. In: Miner. Eng., Selected papers from processing and disposal of minerals industry wastes’05 19, pp 380–387. doi: 10.1016/j.mineng.2005.12.003
  39. Radhika M, Palanivelu K (2006) Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—Kinetics and isotherm analysis. J Hazard Mater 138:116–124. doi: 10.1016/j.jhazmat.2006.05.045 CrossRefGoogle Scholar
  40. Rocha CG, Zaia DAM, da Alfaya RVS, da Alfaya AAS (2009) Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. J Hazard Mater 166:383–388. doi: 10.1016/j.jhazmat.2008.11.074 CrossRefGoogle Scholar
  41. Rozman HD, Tan KW, Kumar RN, Abubakar A, Ishak ZAM, Ismail H (2000) The effect of lignin as a compatibilizer on the physical properties of coconut fiber–polypropylene composites. Eur Polym J 36:1483–1494. doi: 10.1016/S0014-3057(99)00200-1 CrossRefGoogle Scholar
  42. Sağ Y, Kutsal T (1996) The selective biosorption of chromium(VI) and copper(II) ions from binary metal mixtures by R. arrhizus. Process Biochem 31:561–572. doi: 10.1016/S0032-9592(95)00100-X CrossRefGoogle Scholar
  43. Saka C, Şahin Ö, Küçük MM (2012) Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. Int J Environ Sci Technol 9:379–394. doi: 10.1007/s13762-012-0041-y CrossRefGoogle Scholar
  44. Saleem N, Bhatti HN (2011) Adsorptive removal and recovery of U(VI) by citrus waste biomass. BioResources 6:2522–2538. doi: 10.15376/biores.6.3.2522-2538 CrossRefGoogle Scholar
  45. Soetaredjo FE, Kurniawan A, Ki OL, Ismadji S (2013) Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system. Chem Eng J 219:137–148. doi: 10.1016/j.cej.2012.12.077 CrossRefGoogle Scholar
  46. Stringfellow WT, Komada T, Chang L-Y (2004) Biological treatment of concentrated hazardous, toxic, and radionuclide mixed wastes without dilution. Lawrence Berkeley Natl, LabCrossRefGoogle Scholar
  47. Thitame PV, Shukla SR (2015) Adsorptive removal of reactive dyes from aqueous solution using activated carbon synthesized from waste biomass materials. Int J Environ Sci Technol 13:561–570. doi: 10.1007/s13762-015-0901-3 CrossRefGoogle Scholar
  48. Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291. doi: 10.1016/j.biotechadv.2008.02.002 CrossRefGoogle Scholar
  49. Vilar VJP, Botelho CMS, Boaventura RAR (2007) Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour. J Hazard Mater 147:120–132. doi: 10.1016/j.jhazmat.2006.12.055 CrossRefGoogle Scholar
  50. Volesky B (2003) Biosorption process simulation tools. Hydrometall Biohydrometall Fundam Technol Sustain Dev 71:179–190. doi: 10.1016/S0304-386X(03)00155-5 CrossRefGoogle Scholar
  51. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250. doi: 10.1021/bp00033a001 CrossRefGoogle Scholar
  52. Wan Ngah WS, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948. doi: 10.1016/j.biortech.2007.06.011 CrossRefGoogle Scholar
  53. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. doi: 10.1016/j.biotechadv.2008.11.002 CrossRefGoogle Scholar
  54. Wang F, Tan L, Liu Q, Li R, Li Z, Zhang H, Hu S, Liu L, Wang J (2015) Biosorption characteristics of Uranium (VI) from aqueous solution by pollen pini. J Environ Radioact 150:93–98. doi: 10.1016/j.jenvrad.2015.07.002 CrossRefGoogle Scholar
  55. Witek-Krowiak A, Szafran RG, Modelski S (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination 265:126–134. doi: 10.1016/j.desal.2010.07.042 CrossRefGoogle Scholar
  56. Yang J, Volesky B (1999) Biosorption of uranium on Sargassum biomass. Water Res 33:3357–3363. doi: 10.1016/S0043-1354(99)00043-3 CrossRefGoogle Scholar
  57. Yi Z, Yao J, Zhu M, Chen H, Wang F, Yuan Z, Liu X (2016) Batch study of uranium biosorption by Elodea canadensis biomass. J Radioanal Nucl Chem. doi: 10.1007/s10967-016-4839-9 CrossRefGoogle Scholar
  58. Yuan FENG, Fa-Cheng YI (2011) Adsorptive property of rice husk for uranium. At Energy Sci Technol 45:161–167Google Scholar
  59. Zhou L, Huang Z, Luo T, Jia Y, Liu Z, Adesina AA (2014) Biosorption of uranium(VI) from aqueous solution using phosphate-modified pine wood sawdust. J Radioanal Nucl Chem. doi: 10.1007/s10967-014-3725-6 CrossRefGoogle Scholar
  60. Zhou L, Wang Y, Zou H, Liang X, Zeng K, Liu Z, Adesina AA (2016) Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass. J Radioanal Nucl Chem 307:635–644. doi: 10.1007/s10967-015-4166-6 CrossRefGoogle Scholar
  61. Zhu C-S, Wang L-P, Chen W (2009) Removal of Cu(II) from aqueous solution by agricultural by-product: peanut hull. J Hazard Mater 168:739–746. doi: 10.1016/j.jhazmat.2009.02.085 CrossRefGoogle Scholar
  62. Zou W, Zhao L (2011) Removal of uranium(VI) from aqueous solution using citric acid modified pine sawdust: batch and column studies. J Radioanal Nucl Chem 292:585–595. doi: 10.1007/s10967-011-1452-9 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • R. V. P. Ferreira
    • 1
  • E. A. Silva
    • 2
  • R. L. S. Canevesi
    • 2
  • E. G. A. Ferreira
    • 3
  • M. H. T. Taddei
    • 4
  • M. C. Palmieri
    • 1
  • F. R. O. Silva
    • 3
  • J. T. Marumo
    • 3
  1. 1.Itatijuca BiotechSão PauloBrazil
  2. 2.Universidade Estadual do Oeste do ParanáToledoBrazil
  3. 3.Instituto de Pesquisas Energéticas e NuclearesSão PauloBrazil
  4. 4.Comissão Nacional de Energia NuclearPoços de CaldasBrazil

Personalised recommendations