Advertisement

Detoxification of toxic dyes using biosynthesized iron nanoparticles by photo-Fenton processes

  • V. J. Garole
  • B. C. Choudhary
  • S. R. Tetgure
  • D. J. Garole
  • A. U. Borse
Original Paper

Abstract

Environmental contamination resulting from dyes has become a serious concern for today’s world. The textile effluents are highly colored, and the disposal of these in water bodies causes severe damage to the environment by reducing the solar light penetration which may affect the photosynthetic activity and the aquatic life in water. Further, the high water solubility of dyes also leads to surface and ground water contamination. Thus, in this study, we attempt to develop a cost-effective and eco-friendly method for removal of toxic dyes from aqueous using biosynthesized iron nanoparticles (INPs). Various complimentary instruments such as a thermogravimetric analysis, scanning electron microscopy/energy dispersive X-ray spectrometer, and X-ray diffraction were employed for identification and characterization of INPs. The biosynthesized INPs were applied as a Fenton-like catalyst for decolorization of toxic dyes solution like methylene blue, methyl orange, allura red, brilliant blue, and green S using hydrogen peroxide under solar radiation. The decolorization of the toxic dyes solution using INPs was monitored by UV–visible spectrophotometer, and the data obtained were utilized to evaluate the kinetic rate of the reactions. The kinetic data suggest that the decolorization of all studied toxic dyes solution follows first-order rate with rate constant values in the range of 13.1 × 10−3–17.7 × 10−3 min−1. Therefore, such a clean method employing non-toxic plant extract in INP synthesis and the application of INPs as a Fenton-like catalyst in toxic dyes decolorization can be considered as an alternative technique to the expensive and toxic chemical methods.

Keywords

Biosynthesis Lagerstroemia speciosa Iron nanoparticles Dyes Photo-Fenton process 

Notes

Acknowledgements

Authors are thankful to Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, India, for allowing to carry out the experimental work. We sincerely thank the two anonymous reviewers and Prof. Majid Abbaspour (Editor-in-Chief) for the thoughtful and thorough reviews, which have significantly improved the clarity of the manuscript.

References

  1. Akyıldırım O, Medetalibeyoğlu H, Manap S et al (2015) Electrochemical sensor based on graphene oxide/iron nanoparticles for the analysis of quercetin. Int J Electrochem Sci 10:7743–7753Google Scholar
  2. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091. doi: 10.1021/cr300133d CrossRefGoogle Scholar
  3. Ali I, Al-Othman ZA, Al-Warthan A (2016a) Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalin Water Treat 57:10409–10421. doi: 10.1080/19443994.2015.1041164 CrossRefGoogle Scholar
  4. Ali I, Al-Othman ZA, Alwarthan A (2016b) Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J Mol Liquids 218:465–472. doi: 10.1016/j.molliq.2016.04.031 CrossRefGoogle Scholar
  5. Ali I, AL-Othman ZA, Alwarthan A (2016c) Molecular uptake of congo red dye from water on iron composite nano particles. J Mol Liquids 224:171–176. doi: 10.1016/j.molliq.2016.09.108 CrossRefGoogle Scholar
  6. Atar N, Eren T, Yola ML et al (2015a) Fe@Ag nanoparticles decorated reduced graphene oxide as ultra high capacity anode material for lithium-ion battery. Ionics (Kiel) 21:3185–3192. doi: 10.1007/s11581-015-1520-1 CrossRefGoogle Scholar
  7. Atar N, Eren T, Yola ML et al (2015b) Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv 5:26402–26409. doi: 10.1039/C5RA03735B CrossRefGoogle Scholar
  8. Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1:3. doi: 10.1186/s40643-014-0003-y CrossRefGoogle Scholar
  9. Bhargava A, Jain N, Barathi LM et al (2013) Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. J Nanoparticle Res. doi: 10.1007/s11051-013-2031-5 CrossRefGoogle Scholar
  10. Chandra V, Park J, Chun Y et al (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986. doi: 10.1021/nn1008897 CrossRefGoogle Scholar
  11. Cheraghipour E, Javadpour S, Mehdizadeh AR (2012) Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J Biomed Sci Eng 5:715–719. doi: 10.4236/jbise.2012.512089 CrossRefGoogle Scholar
  12. Choudhary BC, Paul D, Gupta T et al (2017) Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. J Environ Sci (China) 55:236–246. doi: 10.1016/j.jes.2016.05.044 CrossRefGoogle Scholar
  13. Farinella NV, Matos GD, Arruda MAZ (2007) Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresour Technol 98:1940–1946. doi: 10.1016/j.biortech.2006.07.043 CrossRefGoogle Scholar
  14. Freyria FS, Bonelli B, Sethi R et al (2011) Reactions of acid orange 7 with iron nanoparticles in aqueous solutions. J Phys Chem C 115:24143–24152. doi: 10.1021/jp204762u CrossRefGoogle Scholar
  15. Gupta VK, Atar N, Yola ML et al (2014) A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217. doi: 10.1016/j.watres.2013.09.027 CrossRefGoogle Scholar
  16. Gupta VK, Agarwal S, Olgun A et al (2016) Adsorptive properties of molasses modified boron enrichment waste based nanoclay for removal of basic dyes. J Ind Eng Chem 34:244–249. doi: 10.1016/j.jiec.2015.11.017 CrossRefGoogle Scholar
  17. Hamed Sadabadi AA (2015) Application of magnetite (Fe3O4) nanoparticles in hexavalent chromium adsorption from aquatic solutions. J Pet Environ Biotechnol 6:1–3. doi: 10.4172/2157-7463.1000200 CrossRefGoogle Scholar
  18. Harshiny M, Iswarya CN, Matheswaran M (2015) Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technol 286:744–749. doi: 10.1016/j.powtec.2015.09.021 CrossRefGoogle Scholar
  19. Hoag GE, Collins JB, Holcomb JL et al (2009) Degradation of bromothymol blue by “greener” nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671. doi: 10.1039/b909148c CrossRefGoogle Scholar
  20. Huang J, Li Q, Sun D et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104. doi: 10.1088/0957-4484/18/10/105104 CrossRefGoogle Scholar
  21. Huang L, Luo F, Chen Z et al (2015) Green synthesized conditions impacting on the reactivity of FeNPs for the degradation of malachite green. Spectrochim Acta Part A Mol Biomol Spectrosc 137:154–159. doi: 10.1016/j.saa.2014.08.116 CrossRefGoogle Scholar
  22. Karve M, Choudhary B (2017) Penicillium chrysogenum immobilised silica: flame atomic absorption spectrometric Pb determination in industrial effluent, sludge and food samples. Int J Environ Sci Technol 14:993–998. doi: 10.1007/s13762-016-1199-5 CrossRefGoogle Scholar
  23. Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces 68:55–60. doi: 10.1016/j.colsurfb.2008.09.021 CrossRefGoogle Scholar
  24. Kumar B, Smita K, Cumbal L et al (2016) Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Mater Chem Phys 179:310–315. doi: 10.1016/j.matchemphys.2016.05.045 CrossRefGoogle Scholar
  25. Latha N, Gowri M (2014) Bio synthesis and characterisation of Fe3O4 nanoparticles using Caricaya papaya leaves extract. Int J Sci Res 3:1551–1556Google Scholar
  26. Machado S, Pacheco JG, Nouws HPA et al (2017) Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int J Environ Sci Technol 14:1109–1118. doi: 10.1007/s13762-016-1197-7 CrossRefGoogle Scholar
  27. Majumdar R, Bag B, Maity N (2013) Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity. Int Nano Lett 3:53. doi: 10.1186/2228-5326-3-53 CrossRefGoogle Scholar
  28. Makarov VV, Makarova SS, Love AJ et al (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30:5982–5988. doi: 10.1021/la5011924 CrossRefGoogle Scholar
  29. Muthukumar H, Matheswaran M (2015) Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain Chem Eng 3:3149–3156. doi: 10.1021/acssuschemeng.5b00722 CrossRefGoogle Scholar
  30. Njagi EC, Huang H, Stafford L et al (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27:264–271. doi: 10.1021/la103190n CrossRefGoogle Scholar
  31. O’Neill C, Hawkes FR, Hawkes DL et al (1999) Colour in textile effluents—sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018. doi: 10.1002/(SICI)1097-4660(199911)74:11<1009:AID-JCTB153>3.0.CO;2-N CrossRefGoogle Scholar
  32. Philip D (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta Part A Mol Biomol Spectrosc 77:807–810. doi: 10.1016/j.saa.2010.08.008 CrossRefGoogle Scholar
  33. Rahman OU, Mohapatra SC, Ahmad S (2012) Fe3O4 inverse spinal super paramagnetic nanoparticles. Mater Chem Phys 132:196–202. doi: 10.1016/j.matchemphys.2011.11.032 CrossRefGoogle Scholar
  34. Shahwan T, Abu Sirriah S, Nairat M et al (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266. doi: 10.1016/j.cej.2011.05.103 CrossRefGoogle Scholar
  35. Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41:807–878. doi: 10.1080/10643380903218376 CrossRefGoogle Scholar
  36. Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) A green protocol for room temperature synthesis of silver nanoparticles in seconds. Current Science 97:1055–1059Google Scholar
  37. Sivalingam G, Nagaveni K, Hegde MS, Madras G (2003) Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl Catal B Environ 45:23–38. doi: 10.1016/S0926-3373(03)00124-3 CrossRefGoogle Scholar
  38. Trovó AG, Hassan AK, Sillanpää M, Tang WZ (2016) Degradation of Acid Blue 161 by Fenton and photo-Fenton processes. Int J Environ Sci Technol 13:147–158. doi: 10.1007/s13762-015-0854-6 CrossRefGoogle Scholar
  39. Vidhu VK, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56:54–62. doi: 10.1016/j.micron.2013.10.006 CrossRefGoogle Scholar
  40. Wang C, Zhu Q, Gu C et al (2016) Photocatalytic degradation of two different types of dyes by synthesized La/Bi2 WO6. RSC Adv 6:85852–85859. doi: 10.1039/C6RA17798K CrossRefGoogle Scholar
  41. Xu P, Zeng GM, Huang DL et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. doi: 10.1016/j.scitotenv.2012.02.023 CrossRefGoogle Scholar
  42. Yew YP, Shameli K, Miyake M et al (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11:276. doi: 10.1186/s11671-016-1498-2 CrossRefGoogle Scholar
  43. Yola ML, Eren T, Atar N, Wang S (2013) Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste. Chem Eng J 242:333–340. doi: 10.1016/j.cej.2013.12.086 CrossRefGoogle Scholar
  44. Yola ML, Eren T, Atar N (2014a) A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta 125:38–47. doi: 10.1016/j.electacta.2014.01.074 CrossRefGoogle Scholar
  45. Yola ML, Eren T, Atar N (2014b) Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285. doi: 10.1016/j.bios.2014.04.045 CrossRefGoogle Scholar
  46. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. 3rd Revised edn. Wiley, GermanyGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • V. J. Garole
    • 1
  • B. C. Choudhary
    • 1
    • 2
  • S. R. Tetgure
    • 1
  • D. J. Garole
    • 1
    • 3
  • A. U. Borse
    • 1
  1. 1.School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.Centre for Environmental Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  3. 3.Directorate of Geology and MiningGovernment of MaharashtraNagpurIndia

Personalised recommendations