Alternative valorization of red mud waste as functional materials with catalytic activity for sulfide oxidation in wastewater

  • A. Cruceanu
  • R. ZăvoianuEmail author
  • O. D. Pavel
  • M. Florea
  • L. Mara
Original Paper


This work investigates the catalytic properties toward sulfide oxidation in wastewater for three composites which are functional materials obtained from red mud waste following its neutralization, chemical activation and functionalization of the iron by treatment with disodium salt of ethylenediaminetetraacetic acid, trisodium citrate or a combination of these two organic ligands. X-ray diffraction and diffuse reflectance Fourier transformed infrared spectroscopy characterizations indicated the coexistence of the corresponding iron chelates phases along with hematite the main crystallographic phase from red mud. The most active catalyst was the red mud-derived material obtained by functionalization with the mixture of ethylenediaminetetraacetate and citrate ligands. The results obtained after its testing in multiple reaction cycles showed that the decrease in conversion after 10 reaction cycles was less than 5%. Considering the results of diffuse reflectance ultraviolet visible narrow infrared spectroscopical analysis which revealed that this solid contains species with lower bond strength, it has been inferred that both the higher catalytic activity, as well as the enhanced stability, is directly related to the versatility of the active species.


Functional red mud Iron chelates Wastewater treatment Bauxite residue Sulfide catalytic removal 



Authors acknowledge the financial support of this work by the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI) through Collaborative Applied Research Project—Grant Number 78/2014. We would also like to express our gratitude to Dr. Ruxandra Birjega for fruitful discussions.

Supplementary material

13762_2017_1449_MOESM1_ESM.doc (318 kb)
Supplementary material 1 (DOC 318 kb)


  1. Ahmad N, Maitra S, Kanti Dutta B, Ahmad F (2009) Remediation of sulfidic wastewater by catalytic oxidation with hydrogen peroxide. J Environ Sci 21:1735–1740. doi: 10.1016/S1001-0742(08)62481-X CrossRefGoogle Scholar
  2. Castaldi P, Silvetti M, Santona L, Enzo S, Melis P (2008) XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals. Clay Clay Miner 56:461–469. doi: 10.1346/CCMN.2011.0590207 CrossRefGoogle Scholar
  3. Cruceanu A, Zăvoianu R, Angelescu E (2001) Catalytic desulphurisation of gaseous streams containing H2S in the presence of Fe, Co and Cr chelates catalysts. Prog Catal 10(1–2):27–39 Accessed 12 Jan 2017
  4. Cruceanu A, Zăvoianu R, Bîrjega R, Ropot M (2005) Preliminary studies concerning catalytic oxidation of alkyl mercaptans from liquid petroleum cuts in the presence of Fe(III) chelates supported on hydrotalcite-like compounds. Annals Univ Bucharest 1:41–48 Accessed 12 Jan 2017
  5. EN 196-6 (2010) Methods of testing cement–part6: determination of fineness - BS EN 196-6:2010. ISBN:9780580622380.
  6. Farmer VC (1975) Infrared spectroscopy in mineral chemistry. In: Nicol AW (ed) Physicochemical methods of mineral analysis. Plenum Press, New York, pp 357–388. doi: 10.1007/978-1-4684-2046-3_9 CrossRefGoogle Scholar
  7. Feret FR (2013) Selected applications of Rietveld-XRD analysis for raw materials of the aluminum industry. In: JCPDS-International Centre for Diffraction Data, pp. 123–136Google Scholar
  8. Feret FR, Roy D, Boulanger C (2000) Determination of alpha and beta alumina in ceramic alumina by X-ray diffraction. Spectrochim Acta B 55:1051–1061. doi: 10.1016/S0584-8547(00)00225-1 CrossRefGoogle Scholar
  9. Firer D, Friedler E, Lahav O (2008) Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications. Sci Total Environ 392:145–156. doi: 10.1016/j.sscitotenv.2007.11.008 CrossRefGoogle Scholar
  10. Genc H, Tjell JC, McConchie D, Schuiling O (2003) Adsorption of arsenate from water using neutralized red mud. J Colloids Interface Sci 264:327–334. doi: 10.1016/S0021-9797(03)00447-8 CrossRefGoogle Scholar
  11. Genç-Fuhrman H, Tjell JC, McConchie D (2004) Increasing the arsenate adsorption capacity of neutralized red mud. J Colloids Interface Sci 271:313–320. doi: 10.1016/j.jcis.2003.10.011 CrossRefGoogle Scholar
  12. Gräfe M, Power G, Klauber C (2011) Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 108:60–79. doi: 10.1016/j.hydromet.2011.02.004 CrossRefGoogle Scholar
  13. ICDD database (2006) International Center for Diffraction Data Newtown Square, PA, U.S.A.
  14. Jung KD, Joo OS, Cho SH, Han SH (2003) Catalytic wet oxidation of H2S to sulfur on Fe/MgO catalyst. Appl Catal A Gen 240:235–241. doi: 10.1016/S0926-860X(02)00450-7 CrossRefGoogle Scholar
  15. Khan J, Amritphale SS, Chandra N, Patel M (2012) A novel binder-free and energy-efficient process for making ceramic tiles using red mud and sericitic pyrophyllite. J Indian Chem Technol 19:420–426
  16. Kong X, Guo Y, Xue S, Hartley W, Wu C, Ye Y, Cheng Q (2017) Natural evolution of alkaline characteristics in bauxite residue. J Clean Prod 143:224–230. doi: 10.1016/j.jclepro.2016.12.125 CrossRefGoogle Scholar
  17. Krishnamurti GSR, Huang PM (1991) Influence of citrate on the kinetics of Fe(II) oxidation and the formation of iron oxyhydroxide. Clay Clay Miner 39:28–34. doi: 10.1346/CCMN.1991.0390104 CrossRefGoogle Scholar
  18. Kumar S, Kumar R, Bandopadhyay A (2006) Innovative methodologies for the utilisation of wastes from metallurgical and allied industries. Resour Conserv Recycl 48:301–314. doi: 10.1016/j.resconrec.2006.03.003 CrossRefGoogle Scholar
  19. Nielsen AH, Lens P, Vollertsen J, Hvitved-Jacobsen T (2005) Sulfide–iron interactions in domestic wastewater from a gravity sewer. Water Res 39:2747–2755. doi: 10.1016/j.watres.2005.04.048 CrossRefGoogle Scholar
  20. Odilon Kikouama JR, Konan KL, Katty A, Bonnet JP, Baldé L, Yagoubi N (2009) Physicochemical characterization of edible clays and release of trace elements. Appl Clay Sci 43:135–141. doi: 10.1016/j.clay.2008.07.031 CrossRefGoogle Scholar
  21. Palmer SJ, Frost RL (2009) Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques. J Mater Sci 44:55–63. doi: 10.1007/s10853-008-3123-y CrossRefGoogle Scholar
  22. Ruan HD, Frost RL, Kloprogge JT (2001) The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim Acta A 57:2575–2586. doi: 10.1016/S1386-1425(01)00445-0 CrossRefGoogle Scholar
  23. Sahu RC, Patel R, Ray BC (2011) Removal of hydrogen sulfide using red mud at ambient conditions. Fuel Process Technol 92:1587–1592. doi: 10.1016/j.fuproc.2011.04.002 CrossRefGoogle Scholar
  24. Sawyer DT, McKinnie JM (1960) Properties and infrared spectra of ethylenediaminetetraacetic acid complexes. III. chelates of higher valent ions. JACS 82:4191–4196. doi: 10.1021/ja01501a019 CrossRefGoogle Scholar
  25. Sherman DM, Waite TD (1985) Electronic spectra of Fe3 + oxides and oxide hydroxides in the near IR to near UV. Am Miner 70:1262–1269.
  26. Silva AMN, Kong X, Parkin MC, Cammack R, Hider RC (2009) Iron(III) citrate speciation in aqueous solution. Dalton Trans 40:8616–8625. doi: 10.1039/b910970f CrossRefGoogle Scholar
  27. Snars K, Gilkes RJ (2009) Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl Clay Sci 46:13–20. doi: 10.1016/j.clay.2009.06.014 CrossRefGoogle Scholar
  28. Strens RJ, Wood BJ (1979) Diffuse reflectance spectra and optical properties of some iron and titanium oxides and oxyhydroxides. Miner Mag 43:347–354. doi: 10.1180/minmag.1979.043.327.06 CrossRefGoogle Scholar
  29. Tabor E, Závěta K, Sathu NK, Tvarůžková Z, Sobalík Z (2011) Characterization of iron cationic sites in ferrierite using Mössbauer spectroscopy. Catal Today 169:16–23. doi: 10.1016/j.cattod.2010.09.017 CrossRefGoogle Scholar
  30. Terorde RJAM, van den Brink PJ, Visser LM, van Dillen AJ, Geus JW (1993) Selective oxidation of hydrogen sulfide to elemental sulfur using iron oxide catalysts on various supports. Catal Today 17:217–225. doi: 10.1016/0920-5861(93)80026-W CrossRefGoogle Scholar
  31. Wagner CC, Baran EJ (2010) Vibrational spectra of two Fe(III)/EDTA complexes useful for iron supplementation. Spectrochim Acta A 75:807–810. doi: 10.1016/j.saa.2009.11.059 CrossRefGoogle Scholar
  32. Zăvoianu R, Cruceanu A, Pavel OD, Mara L, Velea T, Bîrjega R (2015) Alternative valorisation of red mud waste as catalyst for sulphide oxidation in wastewater. In: Yannis P (ed), Proceedings of bauxite residue valorisation and best practices, Leuven, 5–8 Oct 2015, Leuven, pp 219–230 Accessed 12 Jan 2017
  33. Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42:1–12. doi: 10.1016/j.watres.2007.07.013 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of ChemistryUniversity of BucharestBucharestRomania
  2. 2.National Institute of Materials PhysicsMagureleRomania
  3. 3.National Research-Development Institute for Non-ferrous and Rare Metals-IMNRIlfov CountyRomania

Personalised recommendations