Advertisement

Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: a promising biotechnological tool

  • C. E. Paisio
  • M. Fernandez
  • P. S. González
  • M. A. Talano
  • M. I. Medina
  • E. Agostini
Original Paper

Abstract

The aim of this work was to evaluate the usefulness of Lemna minuta Kunth for the simultaneous removal of Cr(VI) and phenol. The impact of these contaminants on plant growth and some biochemical processes have also been discussed for a better understanding and utilization of this species in the field of phytoremediation. The optimal growth conditions and plant tolerance to Cr(VI) and/or phenol as well as removal were determined. Plants exposed to Cr(VI) and phenol were able to efficiently grow and remove both contaminants at high concentrations (up to 2.5 and 250 mg/L, respectively) after 21 days, indicating that they were resistant to mixed contamination. There were no significant differences between chlorophyll, carotene and malondialdehyde content of treated plants with respect to the controls, which would be due to an efficient antioxidant response. L. minuta showed a higher biomass than control without contaminant when was exposed to low concentrations of Cr(VI), suggesting an hormesis effect. The main removal process involved in chromium phytoremediation would be sorption or accumulation in the biomass. Moreover, our results suggest that phenol could be used as a donor of carbon and energy by these plants. These findings demonstrated that Lemna minuta Kunth might be suitable for treatment of different solutions contaminated with Cr(VI) and phenol, showing a high potential to be used in the treatment of effluents containing mixed contamination.

Keywords

Biodegradation Contamination Environmental remediation Macrophyte 

Notes

Acknowledgements

The authors of this paper are members of the research career from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina). M.F. has a fellowship from CONICET, and M.I.M. is teacher at U.N.R.C. We wish to thank CONICET D5205 for the financial support.

References

  1. APHA (1995) Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association, Washington, DCGoogle Scholar
  2. Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100CrossRefGoogle Scholar
  3. Badr NBE, Fawzy M (2008) Bioaccumulation and biosorption of heavy metals and phosphorous by Potamogeton pectinatus and Ceratophyllum demersum in two Nile delta lakes. Fresenius Environ Bull 17(3):283–294Google Scholar
  4. Chakraborty R, Karmakar S, Mukherjee S, Kumar S (2014) Kinetic evaluation of chromium(VI) sorption by water lettuce (Pistia). Water Sci Technol 69(1):195–201CrossRefGoogle Scholar
  5. Chaudhary E, Sharma P (2012) Duckweed as ecofriendly tool for phytoremediation. Int J Sci Res 3(6):1615–1617Google Scholar
  6. Chen Z, Huang Z, Cheng Y, Pan D, Pan X, Yu M, Pan Z (2012) Cr (VI) uptake mechanism of Bacillus cereus. Chemosphere 87(3):211–216CrossRefGoogle Scholar
  7. Cherian S, Oliveira M (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390CrossRefGoogle Scholar
  8. Dan P, Mandal S, De A, Mandal S (2016) Studies on the toxicity of chromium(VI) to Pistia stratiotes L. plant and its removal. Int J Curr Microbiol App Sci. 5(6):975–982CrossRefGoogle Scholar
  9. Delgadillo-López AE, González-Ramírez CA, Prieto-García F, Jr Villagómez-Ibarra, Acevedo-Sandoval O (2011) Fitorremediación: una alternativa para eliminar la contaminación. Trop Subtrop Agroecosys 14:597–612Google Scholar
  10. Dere S, Günes T, Sivaci R (1998) Spectrophotometric determination of chlorophyll A, B and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13–18Google Scholar
  11. Dixit R, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Singh B, Rai J, Kumar Sharma P, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental. Proc Sustain 7:2189–2212CrossRefGoogle Scholar
  12. Guimaraes F, Aguiar R, Oliveira J, Silva J, Karam D (2012) Potential of macrophyte for removing arsenic from aqueous solution. Plant Daninha 30:683–696CrossRefGoogle Scholar
  13. Guttmann D, Poage G, Johnston T, Zhitkovich A (2008) Reduction with glutathione is a weakly mutagenic pathway in chromium(VI) metabolism. Chem Res Toxicol 21(11):2188–2194CrossRefGoogle Scholar
  14. Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res Int 9(1):29–47CrossRefGoogle Scholar
  15. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198CrossRefGoogle Scholar
  16. Hoagland DR, Broyer TC (1936) General nature of the process of salt accumulation by roots with description of experimental conditions. Plant Physiol 11:477–507CrossRefGoogle Scholar
  17. Hossain M, Kumita M, Michigami Y, Mori S (2005) Optimization of parameters for Cr(VI) adsorption on used black tea leaves. Adsorption 11(5):561–568CrossRefGoogle Scholar
  18. Huebert DB, Dyck BS, Shay JM (1993) The effect of EDTA on the assessment of Cu toxicity in the sbmerged aquatic macrophyte, Lemna trisulca L. Aquatic Toxicol 24:183–194CrossRefGoogle Scholar
  19. Ibáñez SG, Sosa Alderete LG, Medina MI, Agostini E (2012) Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response. Environ Sci Pollut Res 19:1555–1562CrossRefGoogle Scholar
  20. Jena P, Pradhan C, Kumar Patra H (2016) Cr+6-induced growth, biochemical alterations and Chromium bioaccumulation in Cassia tora (L.) Roxb. Ann Plant Sci 5(7):1368–1373CrossRefGoogle Scholar
  21. Jha P, Jobby R, Kudale S, Modi N, Dhaneshwar A, Desai N (2013) Biodegradation of phenol using hairy roots of Helianthus annuus L. Int Biodeterior Biodegrad 77:106–113CrossRefGoogle Scholar
  22. Kart A, Koc E, Dalginli KY, Gulmez C, Sertcelik M, Atakisi O (2016) The therapeutic role of glutathione in oxidative stress and oxidative DNA damage caused by hexavalent chromium. Biol Trace Elem Res 174(2):387–391CrossRefGoogle Scholar
  23. Mallick S, Sinam G, Kumar Mishra R, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73(5):987–995CrossRefGoogle Scholar
  24. Navarro-Aviñó JP, Aguilar-Alonso I, López-Moya JR (2007) Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas 16:10–25Google Scholar
  25. Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30(1):1–8CrossRefGoogle Scholar
  26. Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 375843:1–8Google Scholar
  27. Ontañon O, González P, Agostini E (2015) Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A. Environ Sci Pollut Res 22(17):13014–13023CrossRefGoogle Scholar
  28. Paisio CE, Agostini E, González PS, Bertuzzi ML (2009) Lethal and teratogenic effects of phenol on Bufo arenarum embryos. J Hazard Mat 167:64–68CrossRefGoogle Scholar
  29. Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25CrossRefGoogle Scholar
  30. Rai UN, Tripathi RD, Vajpayee P, Jha Vidyanath, Ali MB (2002) Bioaccumulation of toxic metals (Cr, Cd, Pb and Cu) by seeds of Euryale ferox Salisb (Makhana). Chemosphere 46:267–272CrossRefGoogle Scholar
  31. Rezania S, Taib S, Din M, Dahalan F, Kamy H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mat 318:587–599CrossRefGoogle Scholar
  32. Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1:375–383CrossRefGoogle Scholar
  33. Sood A, Uniya PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41(2):122–137CrossRefGoogle Scholar
  34. Srivastava S, Srivastava M, Suprasanna P, D’souza SG (2011) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37:1937–1941CrossRefGoogle Scholar
  35. Talano MA, Frontera S, González P, Medina MI, Agostini E (2010) Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures. J Hazard Mat 176:784–791CrossRefGoogle Scholar
  36. Teixeira J, Ferraz P, Almeida A, Verde N, Fidalgo F (2013) Metallothionein multigene family expression is differentially affected by Chromium(III) and (VI) in Solanum nigrum L. plants. Food Energy Sec 2:130–140CrossRefGoogle Scholar
  37. Tobin JM, Cooper DG, Neufield R (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Micro 47:821–824Google Scholar
  38. Truu J, Truu M, Espenberg M, Nõlvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9:85–92CrossRefGoogle Scholar
  39. Veglio' F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316CrossRefGoogle Scholar
  40. Vermaat JE, Hanif MK (1998) Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of waste water. Water Res 32(9):2569–2576CrossRefGoogle Scholar
  41. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1–3):48–65CrossRefGoogle Scholar
  42. Wagner M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish. Water Res 36:4041–4052CrossRefGoogle Scholar
  43. Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR (1996) Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bull Environ Contam Toxicol 57:779–786CrossRefGoogle Scholar
  44. Weerasinghe A, Ariyawnasa S, Weerasooriya R (2008) Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation. Chemosphere 70(3):521–524CrossRefGoogle Scholar
  45. Zhou ZY, Liu WX, Pei G, Ren H, Wang J, Xu QL, Xie HH, Wan FH, Tan JW (2013) Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J Agric Food Chem 61(48):11792–11799CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • C. E. Paisio
    • 1
  • M. Fernandez
    • 1
  • P. S. González
    • 1
  • M. A. Talano
    • 1
  • M. I. Medina
    • 1
  • E. Agostini
    • 1
  1. 1.Departamento de Biología Molecular, FCEFQyNUniversidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations