Advertisement

Comparative study of As, Cd, Cu, Cr, Mg, Mn, Ni, Pb and Zn concentrations between sediment and water from estuary and port

  • I. Bejarano-Ramirez
  • Jose M. Jurado
  • R. Muñiz-Valencia
  • Á. Alcázar
  • Silvia G. Ceballos-Magaña
  • A. Olivos-Ortiz
  • O. Rangel
Short Communication

Abstract

The contents of As, Cd, Cu, Cr, Mg, Mn, Ni, Pb and Zn have been determined in sediment and water samples from Valle de las Garzas estuary and Port Manzanillo (Colima, Mexico) using ICP-AES. The concentrations of these elements were used for a comparative study to determine the distribution of heavy metals and to evaluate which elements reflect natural or anthropogenic backgrounds. For this purpose, seven sampling points were selected: Four of them correspond to the lagoon, and three were situated in the port. Statistical analysis of the mineral content was assessed. Initially, data comparison was assessed by statistical tests for each variable. Principal component analysis was then applied considering the influence of all variables at the same time by obtaining the distribution of samples according to their scores in the principal component space. In this way, four studies were carried out: (1) study of sediments collected during the dry season; (2) study of sediments collected during the rainy season; (3) comparative study between sediments from rainy and dry season; and (4) study of water composition collected during rainy season. From the results of the performed analyses, it can be concluded that metals distribution pattern reflected natural and anthropogenic backgrounds (e.g., sediments from the lagoon, situated at the beginning of the rain channel, presented high contents of Zn and Cu, perhaps related to anthropogenic activities or the influence of igneous sediments).

Keywords

Trace metals Environmental analysis Sediments Superficial waters Principal component analysis 

Notes

Acknowledgements

Authors wish to thank CONACYT-México for the research grant provided and for the supported Project Number 280143 and to the department of ecology of the Integral Port Administration-Manzanillo (API-Manzanillo) for the support and facilities for the development of this study.

Supplementary material

13762_2016_1235_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. Aguilar VMC, Braga ES, Baptista JA (2008) Heavy metals assessment in two subtropical estuarine systems in the state of Sao Paulo, Brazil. In: Hofer TN (ed) Marine pollution: new research. Nova Science Publishers, New York, pp 379–938Google Scholar
  2. Álvarez-Iglesias P, Rubio B (2012) Trace Metals in Shallow Marine Sediments from the Ría de Vigo: Sources, pollution, speciation and early diagenesis. In: Dionisios P (ed) Geochemistry–earth’s system processes. InTech, New YorkGoogle Scholar
  3. Ancion PY, Lear G, Lewis GD (2010) Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities. Environ Pollut 158:2738–2745. doi: 10.1016/j.envpol.2010.04.013 CrossRefGoogle Scholar
  4. Das A, Justic D, Swenson E (2010) Modeling estuarine-shelf exchanges in a deltaic estuary: implications for coastal carbon budgets and hypoxia. Ecol Mode 221(7):978–985. doi: 10.1016/j.ecolmodel.2009.01.023 CrossRefGoogle Scholar
  5. Elbaz-Poulichet F (2005) River inputs of metals and Arsenic. In: Part K, Saliot A (eds) The Mediterranean Sea, vol 5., The handbook of environmental chemistrySpringer, Berlin, pp 211–235CrossRefGoogle Scholar
  6. EPA (1996) Method 3050B: acid digestion of sediments, Sludges, and Soils,” Revision 2Google Scholar
  7. Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60. doi: 10.1007/978-0-387-79284-2_2 Google Scholar
  8. González AG, Herrador MA (2007) A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Anal Chem 26:227–238. doi: 10.1016/j.trac.2007.01.009 CrossRefGoogle Scholar
  9. González-Macías C, Schifter I, Llunch-Cota DB, Méndez-Rodríguez L, Hernández-Vazquez S (2006) Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environ Monit Assess 118:211–230. doi: 10.1007/s10661-006-1492-8 CrossRefGoogle Scholar
  10. Jolliffe IT (2002) Principal components analysis, 2nd edn. Springer, New YorkGoogle Scholar
  11. Kabata-Pendias A (2004) Soil-plant transfer on trace elements—an environmental issue. Geoderma 122:143–149. doi: 10.1016/j.geoderma.2004.01.004 CrossRefGoogle Scholar
  12. Kaiser HF (1960) The application of electronic computers in factor analysis. Educ Psychol Meas. 20:141–151. doi: 10.1177/001316446002000116 CrossRefGoogle Scholar
  13. Kaiser K, Zech W (1998) Rates of dissolved organic matter release and sorption in forest soils. Soil Sci 163:714–725CrossRefGoogle Scholar
  14. Karageorgis AP, Sioulas AI, Anagnostou CL (2002) Use of surface sediments in Pagassitikos Gulf, Greece, to detect anthropogenic influence. Geo-Marine Lett 21:200–211. doi: 10.1007/s00367-001-0086-2 CrossRefGoogle Scholar
  15. Kennish MJ, Fertig B (2012) Application and assessment of a nutrient pollution indicator using eelgrass (Zostera marina L.) in Barnegat Bay-Little Egg Harbor estuary, New Jersey. Aquat Bot 96:23–30. doi: 10.1016/j.aquabot.2011.09.005 CrossRefGoogle Scholar
  16. Li W, Shen Z, Tian T, Liu R, Qiu J (2012) Temporal variation of heavy metal pollution in urban stormwater runoff. Front Environ Sci Eng 6:692–700. doi: 10.1007/s11783-012-0444-5 CrossRefGoogle Scholar
  17. McKartney D, Tingley J (1998) Development of a rapid moisture content method for compost materials. Compost Sci Util 6:14–25. doi: 10.1080/1065657X.1998.10701927 CrossRefGoogle Scholar
  18. Meyer-Willerer AO, Torres-Orozco E, Patiño-Barragán M (2008) La laguna el Valle de las Garzas deteriorada como laguna de oxidación. Iridia 5:16–27Google Scholar
  19. Mucha AP, Vasconcelos MTSD, Bordalo AA (2003) Macrobenthic community in the Douro Estuary: relations with trace metals and natural sediment characteristics. Environ Pollut 121:169–180. doi: 10.1016/S0269-7491(02)00229-4 CrossRefGoogle Scholar
  20. Muth J (1999) Basic statistic and pharmaceutical statistical applications. Marcel Dekker, New YorkGoogle Scholar
  21. Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48. doi: 10.1007/s100210000058 CrossRefGoogle Scholar
  22. Pinto R, Patricio J, Neto JM, Salas F, Marques JC (2010) Assessing estuarine quality under the ecosystem services scope: ecological and socioeconomic aspects. Ecol Complex 7:389–402. doi: 10.1016/j.ecocom.2010.05.001 CrossRefGoogle Scholar
  23. Pinto JJ, Garcia-Vargas M, Moreno C (2013) A bulk liquid membrane-flow injection (BLM-F1) coupled system for the preconcentration and determination of vanadium in saline waters. Talanta 103:161–165. doi: 10.1016/j.talanta.2012.10.026 CrossRefGoogle Scholar
  24. Ridgway J, Shimmield G (2002) Estuaries as repositories of historical contamination and their impact on shelf seas. Estuar Coast Shelf Sci 6:903–928. doi: 10.1006/ecss.2002.1035 CrossRefGoogle Scholar
  25. Rivail Da Silva M, Lamotte M, Donard OFX, Soriano-Sierra EJ, Robert M (1996) Metal contamination in surface sediments of mangroves, lagoons and Southern Bay in Florianopolis Island. Environ Technol 17:1035–1046. doi: 10.1080/09593331708616473 CrossRefGoogle Scholar
  26. Robson AJ, Neal C (1997) A summary of regional water quality for Eastern UK Rivers. Sci Total Environ 194(195):15–37. doi: 10.1016/S0048-9697(96)05351-X CrossRefGoogle Scholar
  27. Roux LL, Roux SL, Appriou P (1998) Behaviour and speciation of metallic species Cu, Cd, Mn and Fe during estuarine mixing. Mar Pollut Bull 36:56–64. doi: 10.1016/S0025-326X(98)90033-9 CrossRefGoogle Scholar
  28. Singh N, Turner A (2009) Leaching of copper and zinc from spent antifouling paint particles. Environ Pollut 157(2):371–376. doi: 10.1016/j.envpol.2008.10.003 CrossRefGoogle Scholar
  29. Tarbuck EJ, Lutgens FK (2010) Earth: an introduction to physical geology, 10th edn. Prentice Hall, London, p 744Google Scholar
  30. Tsakovski S, Simeonov V (2009) Chemometrics as a tool for treatment processing of multiparametric analytical data sets. In: Namiesnik J, Szefer P (eds) Analytical measurements in aquatic environments. CRC Press, Boca Rato, pp 369–388CrossRefGoogle Scholar
  31. Xu B, Burnett W, Dimova N, Diao S, Mi T, Jiang X, Zhigang Y (2013) Hydrodynamics in the Yellow River estuary via radium isotopes: ecological perspectives. Cont Shelf Res 66:19–28. doi: 10.1016/j.csr.2013.06.018 CrossRefGoogle Scholar
  32. Zabetoglou K, Voutsa D, Samara C (2002) Toxicity and heavy metal contamination of surficial sediments from the Bay of Thessaloniki (Northwestern Aegean Sea) Greece. Chemosphere 49:17–26. doi: 10.1016/j.csr.2013.06.018 CrossRefGoogle Scholar
  33. Zampella M, Adamo P, Caner L, Petit S, Righi D, Terribile F (2010) Chromium and copper in micromorphological features and clay fractions of volcanic soils with andic properties. Geoderma 157:185–195. doi: 10.1016/j.geoderma.2010.04.012 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • I. Bejarano-Ramirez
    • 1
  • Jose M. Jurado
    • 2
  • R. Muñiz-Valencia
    • 1
  • Á. Alcázar
    • 2
  • Silvia G. Ceballos-Magaña
    • 3
  • A. Olivos-Ortiz
    • 4
  • O. Rangel
    • 3
  1. 1.Facultad de Ciencias QuímicasUniversidad de ColimaCoquimatlánMexico
  2. 2.Department of Analytical Chemistry, Faculty of ChemistryUniversity of SevilleSevilleSpain
  3. 3.Facultad de CienciasUniversidad de ColimaColimaMexico
  4. 4.Centro de Universitario de Investigaciones OceanológicasUniversidad de ColimaManzanilloMexico

Personalised recommendations