Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles

  • P. Singla
  • O. P. Pandey
  • K. SinghEmail author
Original Paper


Undoped and Ni-doped TiO2 nanoparticles are synthesized using sol–gel technique. The physical, structural, optical and thermal properties of the samples are investigated using X-ray powder diffraction, Fourier transform infrared spectroscopy, transmittance electron microscopy, UV–visible diffuse reflectance and thermogravimetric analysis. The photocatalytic activity of the samples is investigated by the photocatalytic degradation of phthalate esters. Phthalate esters have been considered as endocrine disrupting compounds. Ni-doped TiO2 samples show better photocatalytic activity as compared to undoped TiO2 sample. The greater photocatalytic activity of doped samples as compared to undoped TiO2 can be attributed to the production of more number of electron–hole pairs in doped samples.


Sol–gel process X-ray methods Optical properties TiO2 Photocatalytic activity 



The authors are thankful to Dr. Gurbinder Kaur for her help in analyzing the results. Authors are also thankful to UGC for financial help under meritorious fellowships in reference to Letter No. F.4-1/2006/(BSR)/7-304/2010(BSR).


  1. Abbad MMB, Kadum AAH, Mohamad AB, Takriff MS, Sopian K (2012) Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem Sci 7:4871–4888Google Scholar
  2. Aguilar T, Navas J, Alcantara R, Lorenzo CF, Gallardo J, Blanco G, Calleja JM (2013) A route for the synthesis of Cu doped TiO2 nanoparticles with very low band gap. Chem Phys Lett 571:49–53CrossRefGoogle Scholar
  3. Akpan UG, Hameed BH (2010) The advancements in sol–gel method of doped TiO2 photocatalysts. Appl Catal A Gen 375:1–11CrossRefGoogle Scholar
  4. Ananpattarachai J, Kajitvichyanukul P (2015) Photocatalytic degradation of p,p′-DDT under UV and visible light using interstitial N-doped TiO2. J Environ Sci Health B 50:247–260. doi: 10.1080/03601234.2015.999592 CrossRefGoogle Scholar
  5. Chen C, Wang Z, Ruan S, Zhao M, Zou B, Wu F (2008) Photocatalytic degradation of C.I. Acid Orange 52 in the presence of Zn doped TiO2 prepared by stearic acid gel method. Dyes Pigm 77:204–209CrossRefGoogle Scholar
  6. Cheng TS (2012) The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodelapolyrhiza L.). Aquat Toxicol 2012(124–125):171–178CrossRefGoogle Scholar
  7. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  8. Devi LG, Murthy BN, Kumar SG (2010) Photocatalytic activity of TiO2 doped with Zn2+ and V5+ transition metal ions: influence of crystallite size and dopant electronic configuration on photocatalytic activity. Mater Sci Eng B 166:1–6CrossRefGoogle Scholar
  9. Ding X, An T, Li G, Chen J, Sheng G, Fu J, Zhao J (2008) Photocatalytic degradation of dimethyl phthalate ester using novel hydrophobic TiO2 pillared montmorillonite photocatalyst. Res Chem Intermed 34:63–83Google Scholar
  10. Ebraheem S, Antar El-Saied (2013) Band gap determination from diffuse reflectance measurements of irradiated lead borate glass system doped with TiO2 by using diffuse reflectance technique. Mater Sci Appl 4:324–329Google Scholar
  11. Fairbairn EA, Bonthius J, Cherr GN (2012) Polycyclic aromatic hydrocarbons and dibutyl phthalate disrupt dorsal–ventral axis determination via the Wnt/β-catenin signaling pathway in zebrafish embryos. Aquat Toxicol 124–125:188–196CrossRefGoogle Scholar
  12. Ganesh I, Gupta AK, Kumar PP, Sekhar PSC, Radha K, Padmanabham G, Sundararajan G (2012) Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Sci World J 2012:1–16CrossRefGoogle Scholar
  13. Ghasemi S, Rahimnejad S, Setayesh SR, Rohani S, Gholami MR (2009) Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J Hazard Mater 172:1573–1578CrossRefGoogle Scholar
  14. Hajjaji A, Atyaoui A, Trabelsi K, Amlouk M, Bousselmi L, Bessais B, Khakani MAE, Gaidi M (2014) Cr doped TiO2 thin films prepared by means of a magnetron Co-sputtering process: photocatalytic application. Am J Anal Chem 5:473–482CrossRefGoogle Scholar
  15. Hanaor DAH, Sorrell CC (2011) Review of anatase to rutile transformation. J Mater Sci 46:855–874CrossRefGoogle Scholar
  16. He Z, Xiao H, Tang L, Min H, Lu Z (2013) Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge. Bioresour Technol 128:526–532CrossRefGoogle Scholar
  17. Jamil TS, Gad Allah TA, Ali MEM, Momba MNB (2015) Utilization of nano size TiO2 for degradation of phenol enrich water by solar photocatalytic oxidation. Desalin Water Treat 53:1101–1106Google Scholar
  18. Jiana W, Joensa JA, Dionysioub DD, O’Sheaa KE (2013) Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate. J Photochem Photobiol A Chem 262:7–13CrossRefGoogle Scholar
  19. Jing Y, Li L, Zhang Q, Lu P, Liu P, Lu X (2011) Photocatalytic ozonation of dimethyl phthalate with TiO2 prepared by hydrothermal method. J Hazard Mater 189:40–47CrossRefGoogle Scholar
  20. Kaur G, Pandey OP, Singh K (2012) Effect of modifiers field strength on optical, structural and mechanical properties of lanthanum borosilicate glasses. J Non Cryst Solids 358:2589–2596CrossRefGoogle Scholar
  21. Kaur N, Kaur SS, Singh V (2015) Anomalous behavior of visible active TiO2 for photocatalytic degradation of different reactive dyes. Photochem Photobiol Sci. doi: 10.1039/C5PP00165J Google Scholar
  22. Kumaresan L, Prabhu A, Palanichamy M, Arumugam E, Murugesan V (2011) Synthesis and characterization of Zr4+, La3+ and Ce3+ doped mesoporous TiO2: evaluation of their photocatalytic activity. J Hazard Mater 186:1183–1192CrossRefGoogle Scholar
  23. Liu W, Chen S, Zhao W, Zhang S (2009) Study on the photocatalytic degradation of trichlorfon in suspension of titanium dioxide. Desalination 249:1288–1293CrossRefGoogle Scholar
  24. Loan TT, Long NN (2014) Optical properties of anatase and rutile TiO2:Cr3+ powders. VNU J Sci Math Phys 30:59–67Google Scholar
  25. Madhu GM, Antony Raj MAL, Pai KVK (2009) Titanium oxide (TiO2) assisted photocatalytic degradation of methylene blue. J Environ Biol 30:259–264Google Scholar
  26. Mansour E, El-Egili K, El-Damrawi G (2007) Ionic–polaronic behavior in CeO2–PbO–B2O3 glasses. Phys B 39:221–228CrossRefGoogle Scholar
  27. Nahum AM, Raul OP, Roberto LR (2013) Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon). Sci Total Environ 442:26–35CrossRefGoogle Scholar
  28. Nakhate GG, Nikam VS, Kanade KG, Arbuj S, Kale B, Baeg JO (2010) Hydrothermally derived nanosized Ni doped TiO2: a visible light driven photocatalyst for methylene degradation. Mater Chem Phys 124:976–981CrossRefGoogle Scholar
  29. Paul S, Choudhary A (2014) Investigation of the optical property and photocatalytic activity of mixed phase nanocrystalline titania. Appl Nanosci 4:839–847CrossRefGoogle Scholar
  30. Sarkar J, Chowdhury PP, Dutta TK (2013) Complete degradation of di-n-octyl phthalate by Gordonia sp. Strain Dop 5. Chemosphere 90:2571–2577CrossRefGoogle Scholar
  31. Singla P, Sharma M, Pandey OP, Singh K (2014) Photocatalytic degradation of azo dyes using Zn-doped and undoped TiO2 nanoparticles. Appl Phys A 116:371–378CrossRefGoogle Scholar
  32. Staples CA (2003) Phthalate esters: the handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  33. Suwanchawalit C, Wongnawa S, Sriprang P, Meanha P (2012) Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light. Ceram Int 38:5201–5207CrossRefGoogle Scholar
  34. Tain B, Li C, Zhang J (2012) One step reparation, characterization and visible light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phase. Chem Eng J 191:402–409CrossRefGoogle Scholar
  35. Tauc J, Menth A (1972) States in the gap. J Non Cryst Solids 8:569–585CrossRefGoogle Scholar
  36. Uddin MJ, Islam MA, Haque SA, Hasan S, Amin MSA, Rahman MM (2012) Preparation of nanostructured TiO2 based photocatalysts by controlling the calcining temperature and pH. Int Nanolett 2:1–10Google Scholar
  37. Umar K, Haque MM, Muneer M, Harada T, Matsumura M (2013) Mo, Mn, and La doped TiO2: synthesis, characterization and photocatalytic activity for the decolourization of three different chromophoric dyes. J Alloys Compd 578:431–438CrossRefGoogle Scholar
  38. Venkatachalam N, Palanichamy M, Murugesan V (2007) Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient degradation of 4-chlorophenol. J Mol Catal A Chem 273:177–185CrossRefGoogle Scholar
  39. Vijayan P, Mahendiran C, Suresh C, Shanthi K (2009) Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trichlorophenol. Catal Today 141:220–224CrossRefGoogle Scholar
  40. Wang S, Lian JS, Zheng WT, Jiang Q (2012) Photocatalytic property of Fe doped anatase and rutile TiO2 nanocrystal particles prepared by sol–gel technique. Appl Surf Sci 263:260–265CrossRefGoogle Scholar
  41. Wang CC, Li JR, Lv XL, Zhang YQ, Guo G (2014) Photocatalytic organic pollutants degradation in metal-organic frame works. Energy Environ Sci 7:2831–2867CrossRefGoogle Scholar
  42. Whang CM, Lim SS (2000) The effect of processing variables on structural changes and optical properties of SiO2–TiO2 sol-gel derived films. Bull Korean Chem Soc 21:1181–1186Google Scholar
  43. Woo SH, Kim WW, Kim SJ, Rhee CK (2007) Photocatalytic behaviors of transition metal ions doped TiO2 powder synthesized by mechanical alloying. Mater Sci Eng A 449–451:1151–1154CrossRefGoogle Scholar
  44. Wu Q, Liu H, Ye LS, Wang YH (2013) Biodegradation of Di-n-butyl phthalate esters by bacillus sp. SASHJ under simulated shallow aquifer condition. Int Biodeterior Biodegrad 76:102–107CrossRefGoogle Scholar
  45. Xu LJ, Chu W, Graham N (2013) A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process. Ultrason Sonochem 20:892–899CrossRefGoogle Scholar
  46. Yang J, Bai H, Tan X, Lian J (2006) IR and XPS investigation of visible-light photocatalysis: nitrogen–carbon-doped TiO2 film. Appl Surf Sci 253:1988–1994CrossRefGoogle Scholar
  47. Zaleska A (2008) Doped-TiO2: a review. Recent Pat Eng 2:157–164CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2015

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations