Exogenous application of ethylenediamminetetraacetic acid enhanced phytoremediation of cadmium by Brassica napus L.

  • M. Farid
  • S. Ali
  • W. Ishaque
  • M. B. Shakoor
  • N. K. Niazi
  • I. Bibi
  • M. Dawood
  • R. A. Gill
  • F. Abbas
Original Paper


Performance of B. napus in phytoextraction—an in situ environment friendly technique for the cleanup of contaminated soils—was evaluated through its response to cadmium (Cd) toxicity in combination with a chelator ethylenediamminetetraacetic acid (EDTA) while growing hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cadmium presence decreased plant growth, biomass and chlorophyll concentrations, while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Presence of Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) resulting into a significant reduction in the activities of catalase, guaiacol peroxidase, ascorbate peroxidase and superoxide dismutase in Cd-stressed plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. The B.napus actively accumulated Cd when applied with EDTA in roots, stems and leaves viz. 2817, 2207 and 1238 mg kg−1 DW, respectively, at higher Cd level (50 μM) followed by lower level of Cd (10 μM) viz. 1704, 1366 and 763 mg kg−1 DW, respectively. Results showed that this technique could be useful for the remediation of heavy metal-contaminated agricultural and industrial soils.


Antioxidant enzymes Cadmium Chelator EDTA Growth Remediation 


  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  2. Ali B, Wang B, Ali S, Ghani MA, Hayat MT, Yang C, Xu L, Zhou WJ (2013) 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32:604–614CrossRefGoogle Scholar
  3. Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2014) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res. doi:10.1007/s11356-014-3938-9
  4. Azevedo H, Gomes C, Pinto G, Fernandes J, Loureiro S, Santos C (2005) Cadmium effects on Sunflower growth and photosynthesis, Dept of Biology, University of Aveiro, Portugal. J Plant Nutr 28:2211–2220CrossRefGoogle Scholar
  5. Bareen FE (2012) Chelate assisted phytoextraction using oilseed brassicas. Environ Pollut 21:289–311CrossRefGoogle Scholar
  6. Bharwana SA, Ali S, Farooq MA, Iqbal N, Hameed A, Abbas F, Ahmad MSA (2014) Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turk J Bot 38:192–281CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Chem 72:248–254Google Scholar
  8. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Biochem Anal 136:764–775Google Scholar
  9. Chigbo C, Batty L (2013) Effect of EDTA and citric acid on phytoremediation of Cr-B [a] P-co-contaminated soil. Environ Sci Pollut Res 20:8955–8963CrossRefGoogle Scholar
  10. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9CrossRefGoogle Scholar
  11. Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109CrossRefGoogle Scholar
  12. Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Safe 106:164–172CrossRefGoogle Scholar
  13. Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity and fate of chelating agents. Chemosphere 68:989–1003CrossRefGoogle Scholar
  14. Ghani A (2011) Varietal differences in canola (Brassica napus L.) for the growth, yield and yield components exposed to cadmium stress. J Anim Plant Sci 21:57–59Google Scholar
  15. Ghosh M, Singh SP (2005a) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6:214–231Google Scholar
  16. Ghosh M, Singh SP (2005b) A comparative study of cadmium phytoremediation by accumulator and weed species. Environ Pollut 1:365–371CrossRefGoogle Scholar
  17. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: occurrence in higher plants. Plant Physiol 59:309–314CrossRefGoogle Scholar
  18. Gill SS, Khan NA, Tuteja N (2011a) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23Google Scholar
  19. Gill SS, Khan NA, Tuteja N (2011b) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars an evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300CrossRefGoogle Scholar
  20. Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Zhou W (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164CrossRefGoogle Scholar
  21. Glass DJ (2009) US and international markets for phytoremediation, 1999–2000. D. Glass Associates, lnc, NeedhamGoogle Scholar
  22. Goldate WC, Aldina G (2010) Mixing a portion of the bottom ash with all the fly ash to obtain a stabilized material of sufficient alkalinity to prevent the leaching of toxic metals in landfills. U.S. Patent No. 7,682,446. US Patent and Trademark Office, WashingtonGoogle Scholar
  23. Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321CrossRefGoogle Scholar
  24. Greipsson S (2011) Phytoremediation. Nat Edu Knowl 3:1–5Google Scholar
  25. Gupta DK, Nicolosoa FT, Schetingerb MRC, Rossatoa LV, Pereirab LB, Castroa GY, Srivastavac S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484CrossRefGoogle Scholar
  26. Han F, Shan XQ, Zhang J, Xie YN, Pei ZJ, Zhang SZ, Zhu YG, Wen B (2005) Organic acids promote the uptake of lanthanum by barley roots. New Phytol 165:481–492CrossRefGoogle Scholar
  27. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198CrossRefGoogle Scholar
  28. Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40CrossRefGoogle Scholar
  29. Luo CL, Shen ZG, Li XD (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11CrossRefGoogle Scholar
  30. Mccutcheon SC, Rock SA (2007) Phytoremediation: state of the science conference and other developments. Int J Phytorem 3:1–11CrossRefGoogle Scholar
  31. Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022CrossRefGoogle Scholar
  32. Metwally A, Safronova VI, Bellimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisumsativum L. J Exp Bot 56:167–178Google Scholar
  33. Metzner H, Rau H, Senger H (1965) Untersuchungen zur synchron isierbakeitein zelnerpi gmentmangel-mutation von chlorella. Planta 65:186–194CrossRefGoogle Scholar
  34. Muhammad D, Chen F, Zhao J, Zhang G, Wu F (2009) Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytorem 11:558–574CrossRefGoogle Scholar
  35. Najeeb U, Xua L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ (2009) Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in JuncuseffususL. J Hazard Mater 170:1156–1163CrossRefGoogle Scholar
  36. Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574CrossRefGoogle Scholar
  37. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:679–690Google Scholar
  38. Nwugol CC, Huerta AJ (2008) Silicon-induced cadmium resistance in rice (Oryza sativa). Soil Sci 171:841–848Google Scholar
  39. Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. I: influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut 144:524–532CrossRefGoogle Scholar
  40. Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47CrossRefGoogle Scholar
  41. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi:10.1155/2012/217037 Google Scholar
  42. Shi GR, Cai QS, Liu CF, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 245:261–288Google Scholar
  43. Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopamonnieri L. Chemosphere 62:233–246CrossRefGoogle Scholar
  44. Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van AL, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444CrossRefGoogle Scholar
  45. Song S, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172:74–83CrossRefGoogle Scholar
  46. Szczygłowska M, Piekarska A, Konieczka P, Namiesnik J (2011) Use of brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771CrossRefGoogle Scholar
  47. Szekely A, Poor P, Bagi I, Csiszar J, Gemes K, Horvath F, Tari I (2011) Effect of EDTA on the growth and copper accumulation of sweet sorghum and sudangrass seedlings. Acta Biol Szeged 55:159–164Google Scholar
  48. VaculíK M, Lux A, Luxovac M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Ecotoxicol Environ Saf 67:52–58Google Scholar
  49. Wahid A, Ghani A, Javed F (2008) Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agron Sustain Dev 28:273–280CrossRefGoogle Scholar
  50. Wan H, Shan XQ, Liu T, Xie Y, Wen B, Zhang S, Han F (2007) Genuchten, organic acids enhance the uptake of Pb by wheat roots. Planta 225:1483–1494CrossRefGoogle Scholar
  51. Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY, Mi H (2006) Chloroplastic NAD (P) H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474CrossRefGoogle Scholar
  52. Wang C, Sun Q, Wang L (2009) Cadmium toxicity and phytochelatins production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium. Environ Toxicol 24:271–278CrossRefGoogle Scholar
  53. Wei S, da Silva JAT, Zhou Q (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater 150:662–668CrossRefGoogle Scholar
  54. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Sci 76:167–179Google Scholar
  55. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PG (2005) Cadmium tolerance and hyperaccumulation in a new Zn hyper accumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189CrossRefGoogle Scholar
  56. Yoon J, Cao XD, Zhou QX, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464CrossRefGoogle Scholar
  57. Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791Google Scholar
  58. Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD (2008) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ J Plant Physiol 55:469–474CrossRefGoogle Scholar
  59. Zhang FQ, Zhang HX, Wang GP, Xu LL, Shen ZG (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76–84CrossRefGoogle Scholar
  60. Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field water, air, and soil pollution. Int J Environ Pollut 12:234–324CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2015

Authors and Affiliations

  • M. Farid
    • 1
  • S. Ali
    • 1
  • W. Ishaque
    • 2
  • M. B. Shakoor
    • 3
  • N. K. Niazi
    • 3
    • 4
  • I. Bibi
    • 3
    • 4
  • M. Dawood
    • 5
  • R. A. Gill
    • 6
  • F. Abbas
    • 1
  1. 1.Department of Environmental Sciences and EngineeringGovernment College UniversityFaisalabadPakistan
  2. 2.Nuclear Institute for Agriculture and Biology (NIAB)FaisalabadPakistan
  3. 3.Institute of Soil and Environmental SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
  4. 4.Southern Cross GeoScienceSouthern Cross UniversityLismoreAustralia
  5. 5.Department of Environmental SciencesBahauddin Zakariya UniversityMultanPakistan
  6. 6.Department of Agronomy, Institute of Crop Science College of Agriculture and BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations