Using oyster tissue toxicity as an indicator of disturbed environments

Short Communication

Abstract

Crassostrea virginica (the Eastern or American oyster) bioaccumulates pollutants from the water column, and therefore, its tissues can be used as bioindicators of past and present estuarine health. In this pilot project, we decided to investigate whether its tissues would be a suitable medium for toxicity testing using tissues from a variety of southern Texas locations of known and suspected anthropogenically impacted and unimpacted areas. We also conducted toxicity tests on sediments adjacent to oyster reefs using standard protocols for sediment toxicity. We tested the toxicity of tissues and sediments on the luminescent bacteria Vibrio fischeri, whose bioassays are commonly referred to by the trade name Microtox®. Microtox tests are quick, relatively inexpensive and sensitive to a range of contaminants. Evidence from this preliminary study suggests that conducting toxicity tests on oyster tissues may predict localized contamination better than when conducting toxicity tests on subtidal sediment. The refinement of these methods to use oyster tissues to detect contamination may be especially useful for environmental impact studies and/or studies where rapid and inexpensive information is needed.

Keywords

Oyster Toxicity Pollution Crassostrea virginica Microtox 

References

  1. Aguilar CA, Montalvo C, Rodríguez L, Cerón JG, Cerón RM (2012) American oyster (Crassostrea virginica) and sediments as a coastal zone pollution monitor by heavy metals. Int J Environ Sci Technol 9:579–586. doi:10.1007/s13762-012-0078-y CrossRefGoogle Scholar
  2. Beijerinck MW (1889) Le Photobacterium luminosum, bactérie lumineuse de la Mer du Nord. Arch Neerl Sci Exact Nat 23:401–405Google Scholar
  3. Boening DW (1999) An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environ Monit Assess 55:459–470. doi:10.1023/A:1005995217901 CrossRefGoogle Scholar
  4. Campisi T, Abbondanzi F, Casado-Martinez C, Delvalls TA, Guerra R, Iacondini A (2005) Effect of sediment turbidity and color on light output measurement for Microtox basic solid-phase test. Chemosphere 60:9–15. doi:10.1016/j.chemosphere.2004.12.052 CrossRefGoogle Scholar
  5. Carr RS, Long ER, Chapman DC, Thursby G, Biedenbach JM, Windom H, Sloane G, Wolfe DA (1996) Toxicity assessment studies of contaminated sediments in Tampa Bay, Florida. Environ Toxicol Chem 15:1218–1231. doi:10.1002/etc.5620150730 CrossRefGoogle Scholar
  6. Cotou E, Papathanassiou E, Tsangaris C (2002) Assessing the quality of marine coastal environments: comparison of scope for growth and Microtox bioassay results of pollution gradient areas in eastern Mediterranean (Greece). Environ Pollut 119:141–149. doi:10.1016/S0269-7491(01)00337-2 CrossRefGoogle Scholar
  7. Couillard CM, Laplatte B, Pelletier E (2009) A fish bioassay to evaluate the toxicity associated with the ingestion of benzo [a] pyrene-contaminated benthic prey. Environ Toxicol Chem 28:772–781. doi:10.1897/08-092R.1 CrossRefGoogle Scholar
  8. Day KE, Dutka BJ, Kwan KK, Batista N, Reynoldson TB, Metcalfe-Smith JL (1995) Correlations between solid-phase microbial screening assays, whole-sediment toxicity tests with macroinvertebrates and in situ benthic community structure. J Great Lakes Res 21:192–206. doi:10.1016/S0380-1330(95)71031-0 CrossRefGoogle Scholar
  9. Doe K, Jackman P, Scroggins R, Mcleay D, Wohlgeschaffen G (2005) Solid-phase test for sediment toxicity using the luminescent bacterium, Vibrio fischeri. In: Blaise C, Férard J-F (eds) Small-scale freshwater toxicity investigations. Springer, Dordrecht, pp 107–136CrossRefGoogle Scholar
  10. Farrington JW (1983) Bivalves as sentinels of coastal chemical pollution—the mussel (and oyster) watch. Oceanus 26:18–29Google Scholar
  11. Folk RL (1965) Petrology of sedimentary rocks. Hemphill, AustinGoogle Scholar
  12. Girotti S, Ferri EN, Fumo MG, Maiolini E (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608:2–29. doi:10.1016/j.aca.2007.12.008 CrossRefGoogle Scholar
  13. Jackson TJ, Wade TL, McDonald TJ, Wilkinson DL, Brooks JM (1994) Polynuclear aromatic hydrocarbon contaminants in oysters from the Gulf of Mexico (1986–1990). Environ Pollut 83:291–298. doi:10.1016/0269-7491(94)90150-3 CrossRefGoogle Scholar
  14. Jennings VLK, Rayner-Brandes MH, Bird DJ (2001) Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Res 14:3448–3456. doi:10.1016/S0043-1354(01)00067-7 CrossRefGoogle Scholar
  15. Johnson BT (2005) Microtox® acute toxicity test. In: Blaise C, Férard J-F (eds) Small-scale freshwater toxicity investigations. Springer, Dordrecht, pp 69–105CrossRefGoogle Scholar
  16. Kwan KK, Dutka BJ (1992) Evaluation of toxi-chromotest direct sediment toxicity testing procedure and Microtox solid-phase testing procedure. B Environ Contam Toxicol 49:656–662. doi:10.1007/BF00200777 CrossRefGoogle Scholar
  17. Lappalainen J, Juvonen R, Nurmi J, Karp M (2001) Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays. Chemosphere 45:635–641. doi:10.1016/S0045-6535(00)00579-8 CrossRefGoogle Scholar
  18. Lau-Wong MM (1990) Assessing the effectiveness of depuration of polluted clams and mussels using the Microtox® bioassay. Bull Environ Contam Toxicol 44:876–883. doi:10.1007/BF01702178 CrossRefGoogle Scholar
  19. Mariscal A, Peinado MT, Carnero-Varo M, Fernández-Crehuet J (2003) Influence of organic solvents on the sensitivity of a bioluminescence toxicity test with Vibrio harveyi. Chemosphere 50:349–354. doi:10.1016/S0045-6535(02)00312-0 CrossRefGoogle Scholar
  20. Montagna PA, Palmer TA (2012) Water and sediment quality status and trends in the coastal bend area—phase 2: data analysis. Report submitted to the Coastal Bend Bays and Estuaries program for project 1206. Texas A&M University—Corpus Christi, Harte Research Institute for Gulf of Mexico Studies, pp 520Google Scholar
  21. Morehead S, Montagna P, Kennicutt MC II (2008) Comparing fixed-point and probabilistic sampling designs for monitoring the marine ecosystem near McMurdo Station, Ross Sea, Antarctica. Antarct Sci 20:471–484. doi:10.1017/S0954102008001326 CrossRefGoogle Scholar
  22. Nicolau BA, Hill EM (2011) Nueces Bay total maximum daily load project—year-five implementation effectiveness monitoring data report. Texas Commission on Environmental Quality, Texas, p 62Google Scholar
  23. Presley RJ, Taylor RJ, Boothe PN (1990) Trace metals in Gulf of Mexico oysters. Sci Total Environ 97(98):551–553. doi:10.1016/0048-9697(90)90263-T CrossRefGoogle Scholar
  24. Ramaiah N, Chandrmohan D (1993) Ecological and laboratory studies on the role of luminous bacteria and their luminescence in coastal pollution surveillance. Mar Pollut Bull 26:190–201. doi:10.1016/0025-326X(93)90621-P CrossRefGoogle Scholar
  25. Ribo JM, Kaiser KLE (1987) Photobacterium Phosphoreum toxicity bioassay. I. Test procedures and applications. Toxic Assess 2:305–323. doi:10.1002/tox.2540020307 Google Scholar
  26. Ringwood AH, Delorenzo ME, Ross PE, Holland AF (1997) Interpretation of Microtox solid-phase toxicity tests: the effects of sediment composition. Environ Toxicol Chem 16:1135–1140. doi:10.1002/etc.5620160607 CrossRefGoogle Scholar
  27. Ross P, Burton GA, Greene M, Ho K, Meier P, Sweet L, Auwarter A, Bispo A, Doe K, Erstfeld K, Goudey S, Goyvaerts M, Henderson D, Jourdain M, Lenon M, Pandard P, Qureshi A, Rowland C, Schipper C, Schreurs W, Trottier S, Van Aggelen G (1999) Interlaboratory precision study of a whole sediment toxicity test with the bioluminescent bacterium Vibrio fischeri. Environ Toxicol 14:339–345. doi:10.1002/(SICI)1522-7278(199907)14:3<339:AID-TOX7>3.0.CO;2-R CrossRefGoogle Scholar
  28. Salazar MH, Salazar SM (1997) Using bioaccumulation and growth in caged intertidal oysters to assess oil exposure and effects in Delaware Bay. In: Proceedings of 20th Arctic Marine Oilspill Program (AMOP) vol 1. pp 661–675Google Scholar
  29. Sericano JL, Atlas EL, Wade TL, Brooks JM (1990a) NOAA’s status and trends mussel watch program: chlorinated pesticides and PCB’s in oysters (Crassostrea virginica) and sediments from the Gulf of Mexico, 1986–1987. Mar Environ Res 29:161–203. doi:10.1016/0141-1136(90)90033-K CrossRefGoogle Scholar
  30. Sericano JL, Wade TL, Atlas EL, Brooks JM (1990b) Historical perspective on the environmental bioavailability of DDT and its derivatives to Gulf of Mexico oysters. Environ Sci Technol 24:1541–1548. doi:10.1021/es00080a014 CrossRefGoogle Scholar
  31. Sericano JL, Wade TL, Brooks JM (1996) Accumulation and depuration of organic contaminants by the American oyster (Crassostrea virginica). Sci Total Environ 179:149–160. doi:10.1016/0048-9697(96)90054-6 CrossRefGoogle Scholar
  32. Sprague JB (1969) Measurement of pollutant toxicity to fish I. Bioassay methods for acute toxicity. Water Res 3:793–821. doi:10.1016/0043-1354(69)90050-5 CrossRefGoogle Scholar
  33. Strategic Diagnostics Inc (2009) Microtox® basic solid-phase test (Basic SPT). Strategic Diagnostics Inc, NewarkGoogle Scholar
  34. Tay K-L, Doe KG, Wade SJ, Vaughan JDA, Berrigan RE, Moore MJ (1992) Sediment bioassessment in Halifax Harbour. Environ Toxicol Chem 11:1567–1581. doi:10.1002/etc.5620111107 CrossRefGoogle Scholar
  35. Weideborg M, Vik EA, Ofjord GD, Kjonno O (1997) Comparison of three marine screening tests and four Oslo and Paris commission procedures to evaluate toxicity of offshore chemicals. Environ Toxicol Chem 16:384–389. doi:10.1002/etc.5620160238 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2015

Authors and Affiliations

  1. 1.Texas A&M University-Corpus ChristiCorpus ChristiUSA

Personalised recommendations