Rapid inactivation of waterborne bacteria using boron-doped diamond electrodes

  • C. HeimEmail author
  • M. Ureña de Vivanco
  • M. Rajab
  • E. Müller
  • T. Letzel
  • B. Helmreich
Original Paper


The application of a boron-doped diamond electrode in electrochemical water disinfection was investigated with respect to its inactivation potential of three indicator microorganisms. Drinking water and the effluent of a wastewater treatment plant spiked with Escherichia coli, Enterococcus faecium and Pseudomonas aeruginosa were electrolysed under different conditions in a batch reactor. All three bacteria species could be successfully inactivated in drinking water. The disinfection rate depended on the applied charge, with far more efficiency at high current densities (208 and 333 mA/cm2) under high ozone concentrations measured in contrast to low current densities (42 mA/cm2) where bacterial inactivation was rather driven by hydroxyl radicals. When oxidising a target pharmaceutical compound in the wastewater treatment plant effluent, the water matrix exhibited an ozone scavenging effect. The resulting decrease in the efficiency could not be detected for the disinfection experiments in the complex water matrix compared to drinking water, which indicates a different disinfection mechanism, probably due to reactive chlorine species.


Electrochemical oxidation Diamond electrode Water disinfection Enterococcus faecium Escherichia coli Pseudomonas aeruginosa 



This research was supported by the Federal Ministry of Education and Research of Germany (03X0087G). The authors want to thank the Institute of Microbial Ecology, Technische Universität München, for their support with the bacteria cultures.


  1. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59CrossRefGoogle Scholar
  2. Anglada Á, Urtiaga A, Ortiz I (2009) Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes. Environ Sci Technol 43:2035–2040CrossRefGoogle Scholar
  3. Anglada Á, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E (2011) Boron-doped anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res 45:828–838CrossRefGoogle Scholar
  4. Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15:449–456CrossRefGoogle Scholar
  5. Bergmann H (2010) Zur Bewertung von Diamantelektroden für die Wasserdesinfektionselektrolyse. gwf-Wasser/Abwasser June 2010:604–613Google Scholar
  6. Burleson GR, Murray TM, Pollard M (1975) Inactivation of viruses and bacteria by ozone, with and without sonication. Appl Microbiol 29:340–344Google Scholar
  7. Caslake LF, Connolly DJ, Menon V, Duncanson CM, Rojas R, Tavakoli J (2004) Disinfection of contaminated water by using solar irradiation. Appl Environ Microbiol 70:1145–1150CrossRefGoogle Scholar
  8. Cho M, Chung H, Yoo J (2003) Disinfection of water containing natural organic matter using ozone-initiated radical reactions. Appl Environ Microbiol 69:2284–2291CrossRefGoogle Scholar
  9. Cho M, Kim J, Kim JY, Yoon J, Kim J-H (2010) Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res 44:3410–3418CrossRefGoogle Scholar
  10. Council Directive 1998/83/EC on the quality of water intended for human consumption. OJ L 330. 05/12/1998:32–54Google Scholar
  11. Council Directive 2006/7/EC concerning the management of bathing water. L 064. 04/03/2006:37–51Google Scholar
  12. Council Directive 2008/1/EC on integrated pollution prevention and control. OJ L 24. 29.01.2008:8–29Google Scholar
  13. Criegée R (1975) Mechanism of ozonolysis. Angew Chem Int Ed 14:745–752CrossRefGoogle Scholar
  14. da Silva LM, Santana MHP, Boodts JFC (2003) Electrochemistry and green chemical processes: electrochemical ozone production. Quim Nova 26:880–888CrossRefGoogle Scholar
  15. Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DCGoogle Scholar
  16. Eliasson B, Hirth M, Kogelschatz U (1987) Ozone synthesis from oxygen in dielectric barrier discharges. J Phys D Appl Phys 20:1421–1437CrossRefGoogle Scholar
  17. Elovitz MS, von Gunten U (1999) Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone-Sci Eng 21:239–260CrossRefGoogle Scholar
  18. Figueras MJ, Borrego JJ (2010) New perspectives in monitoring drinking water microbial quality. Int J Environ Res Public Health 7:4179–4202CrossRefGoogle Scholar
  19. Frontistis Z, Brebou C, Venieri D, Mantzavinos D, Katsaounis A (2011) BDD anodic oxidation as tertiary wastewater treatment for the removal of emerging micro-pollutants, pathogens and organic matter. J Chem Technol Biotechnol 86:1233–1236CrossRefGoogle Scholar
  20. Fryda M, Matthée T (2006) Diamantelektroden in der Elektrochemie oder “diamonds are the electrochemist´s best friend?!”. Aktuelle Wochenschau 8b. Accessed 09 April 2013
  21. Fryda M, Matthée T, Mulcahy S, Höfer M, Schäfer L, Tröster I (2003) Applications of DIACHEM® electrodes in electrolytic water treatment. Electrochem Soc Interface 2003:40–44Google Scholar
  22. Gibson KE, Schwab KJ (2011) Tangential-flow ultrafiltration with integrated inhibition detection for recovery of surrogates and human pathogens from large-volume source water and finished drinking water. Appl Environ Microbiol 77:385–390CrossRefGoogle Scholar
  23. Gottschalk C, Libra JA, Saupe A (2010) Ozonation of water and waste water, 2nd edn. Wiley-VCH, Weinheim, pp 38–42Google Scholar
  24. Griessler M, Knetsch S, Schimpf E, Schmidhuber A, Schrammel B, Wesner W, Sommer R, Kirschner AKT (2011) Inactivation of Pseudomonas aeruginosa in electrochemical advanced oxidation process with diamond electrodes. Water Sci Technol 63:2010–2016CrossRefGoogle Scholar
  25. Haaken D, Dittmar T, Schmalz V, Worch E (2012) Influence of operating conditions and wastewater-specific parameters on the electrochemical bulk disinfection of biologically treated sewage at boron-doped diamond (BDD) electrodes. Desalin Water Treat 46:160–167CrossRefGoogle Scholar
  26. Heim C, Glas K (2011) Ozone I: characteristics/generation/possible applications. Brew Sci 64:8–12Google Scholar
  27. Heim C, Ureña de Vivanco M, Rajab M, Glas K, Horn H, Helmreich B, Letzel T (2011) Ozone II: characterization of in situ ozone generation using diamond electrodes. Brew Sci 64:83–88Google Scholar
  28. Hoigné J, Bader H (1983a) Rate constants of reactions of ozone with organic and inorganic compounds in water—1. Water Res 17:173–183CrossRefGoogle Scholar
  29. Hoigné J, Bader H (1983b) Rate constants of reactions of ozone with organic and inorganic compounds in water—2. Water Res 17:185–194CrossRefGoogle Scholar
  30. Huber M, Göbel A, Joss A, Hermann N, Löffler D, McArdell CS, Ried A, Siegrist H, Ternes T, von Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39:8014–8022CrossRefGoogle Scholar
  31. Hunt NK, Mariñas BJ (1997) Kinetics of Escherichia coli inactivation with ozone. Water Res 31:1355–1362CrossRefGoogle Scholar
  32. Imo TS, Oomori T, Toshihiko M, Tamaki F (2007) The comparative study of trihalomethanes in drinking water. Int J Environ Sci Technol 4:421–426CrossRefGoogle Scholar
  33. Jeong J, Kim JY, Yoon J (2006) The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ Sci Technol 40:6117–6122CrossRefGoogle Scholar
  34. Khadre MA, Yousef AE, Kim J-G (2001) Microbiological aspects of ozone applications in food: a review. J Food Sci 66:1242–1252CrossRefGoogle Scholar
  35. Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2:355–385Google Scholar
  36. Kümmerer K, Erbe T, Gartiser S, Brinker L (1998) AOX emissions from hospitals into municipal waste water. Chemosphere 36:2437–2445CrossRefGoogle Scholar
  37. Lambert PA (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 95:22–26Google Scholar
  38. Lazarova V, Savoye P, Janex ML, Blatchley ER III, Pommepuy M (1999) Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci Technol 40:203–213CrossRefGoogle Scholar
  39. Lee SH, Levy DA, Craun GF, Beach MJ, Caldera ML (2002) Surveillance for waterborne-disease outbreaks—United States, 1999–2000. Morb Mortal Wkly Rep 51:SS-8Google Scholar
  40. Liu F, He G, Zhao M, Huang L, Qu M (2012) Study on the wastewater disinfection at the boron-doped diamond film electrode. Procedia Environ Sci 12:116–121CrossRefGoogle Scholar
  41. Menapace HM, Diaz N, Weiss S (2008) Electrochemical treatment of pharmaceutical wastewater by combining anodic oxidation with ozonation. J Environ Sci Heal A 43:1–8CrossRefGoogle Scholar
  42. Michaud P-A, Panizza M, Ouattara L, Diaco T, Foti G, Comminellis C (2003) Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J Appl Electrochem 33:151–154CrossRefGoogle Scholar
  43. Mtethiwa AH, Munyenyembe A, Jere W, Nyali E (2008) Efficiency of oxidation ponds in wastewater treatment. Int J Environ Res 2:149–152Google Scholar
  44. Ndjomgoue-Yossa AC, Nanseu-Njiki CP, Kengue IM, Ngameni E (2014) Effect of electrode material and supporting electrolyte on the treatment of water containing Escherichia coli by electrocoagulation. Int J Environ Sci Technol. doi: 10.1007/s13762-014-0609-9
  45. Pleskov YV, Sakharova AY, Krotova MD, Bouilov LL, Spitsyn BV (1987) Photoelectrochemical properties of semiconductor diamond. J Electroanal Chem 228:19–27CrossRefGoogle Scholar
  46. Restaino L, Frampton EW, Hemphill JB, Palnikar P (1995) Efficacy of ozonated water against various food-related microorganisms. Appl Environ Microbiol 61:3471–3475Google Scholar
  47. Schmalz V, Dittmar T, Fischer D, Worch E (2008) Diamond electrodes in decentralized wastewater treatment: electrochemical degradation of the chemical oxygen demand (COD) in wastewater with high organic loads from hardening shops. CIT 80:1545–1550Google Scholar
  48. Schmalz V, Dittmar T, Haaken D, Worch E (2009) Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes—contribution for direct reuse of domestic wastewater. Water Res 43:5260–5266CrossRefGoogle Scholar
  49. Tanner BD, Kuwahara S, Gerba CP, Reynolds KA (2004) Evaluation of electrochemically generated ozone for the disinfection of water and wastewater. Water Sci Technol 50:19–25Google Scholar
  50. Tröster I, Schäfer L, Fryda M, Matthée T (2004) Electrochemical advanced oxidation process using DiaChem electrodes. Water Sci Technol 49:207–212Google Scholar
  51. Ureña de Vivanco M, Rajab M, Heim C, Helmreich B, Letzel T (2013) Set-up and energetic considerations for three advanced oxidation reactors treating organic compounds. Chem Eng Technol 36:1–8CrossRefGoogle Scholar
  52. von Gunten U (2003a) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37:1443–1467CrossRefGoogle Scholar
  53. von Gunten U (2003b) Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37:1469–1487CrossRefGoogle Scholar
  54. von Gunten U, Pinkernell U (2000) Ozonation of bromide-containing drinking waters: a delicate balance between disinfection and bromate formation. Water Sci Technol 41:53–59Google Scholar
  55. Wolfe RL, Stewart MH, Liang S, McGuire MJ (1989) Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE. Appl Environ Microbiol 55:2230–2241Google Scholar
  56. Yao Y, Kubota Y, Murakami T, Ochiai T, Ishiguro H, Nakata K, Fujishima A (2011) Electrochemical inactivation kinetics of boron-doped diamond electrode on waterborne pathogens. J Water Health 09(3):534–543CrossRefGoogle Scholar
  57. Yates R, Stenstrom M (2000) Gravimetric sampling procedure for aqueous ozone concentrations. Water Res 34:1413–1416CrossRefGoogle Scholar
  58. Zhu X, Tong M, Shi S, Zhao H, Ni J (2008) Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environ Sci Technol 42:4914–4920CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2014

Authors and Affiliations

  • C. Heim
    • 1
    Email author
  • M. Ureña de Vivanco
    • 1
  • M. Rajab
    • 1
  • E. Müller
    • 1
  • T. Letzel
    • 1
  • B. Helmreich
    • 1
  1. 1.Chair of Urban Water Systems EngineeringTechnische Universität MünchenGarchingGermany

Personalised recommendations