The sensitivity of two Monoraphidium species to zinc: their possible future role in bioremediation

  • I. BácsiEmail author
  • Z. Novák
  • M. Jánószky
  • V. B-Béres
  • I. Grigorszky
  • S. A. Nagy
Original Paper


Effects of zinc on growth, cell morphology, oxidative stress responses and zinc removal activity of two common phytoplankton species, Monoraphidium pusillum (Printz) Komárková-Legnerová and Monoraphidium griffithii (Berkeley) Komárková-Legnerová were investigated at a concentration range of 0.2–160 mg l−1 zinc. Cell densities and chlorophyll content decreased compared with controls in cultures of both species, effective concentrations causing 50 % growth inhibition within 72 h on the basis of cell numbers were 33.69 and 25.63 mg l−1 zinc for M. pusillum and M. griffithii, respectively. Changes in cell morphology and elevated lipid peroxidation levels appeared in zinc-treated cultures of both species, but only at higher (>10 mg l−1) zinc concentrations. The most effective zinc removal appeared at 20 and 10 mg l−1 zinc concentration for M. pusillum and M. griffithii, respectively. Removed zinc is mainly bound on the cell surface in the case of both species. This study provides new data for the zinc tolerance and zinc removal ability of the green algae M. pusillum and M. griffithii and shows that green algal species common in surface waters could have zinc tolerance and zinc-binding abilities, which makes them feasible in treatment of waters contaminated with 10–20 mg l−1 zinc.


Common green algal species Zinc Growth inhibitions Morphological changes Lipid peroxidation Removal 



The research was supported by the EU and co-financed by the European Social Fund under the project ENVIKUT (TÁMOP-4.2.2.A-11/1/KONV-2012-0043), by the Internal Research Project of the University of Debrecen and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.


  1. Ahuja P, Gupta R, Saxena RK (1999) Zn2+ biosorption by Oscillatoria angustissima. Proc Biochem 34:77–85CrossRefGoogle Scholar
  2. Ahuja P, Mohapatra H, Saxena RK, Gupta R (2001) Reduced uptake as a mechanism of zinc tolerance in Oscillatoria angustissima. Curr Microbiol 43:305–310CrossRefGoogle Scholar
  3. Andrade LR, Farina M, Amado-Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125CrossRefGoogle Scholar
  4. Bates SS, Tessier A, Campbell PGC, Buffle J (1982) Zinc adsorption and transport by Chlamydomonas variabilis and Scenedesmus subspicatus (Chlorophyceae) grown in semicontinuous culture. J Phycol 18:521–529CrossRefGoogle Scholar
  5. Bird G, Brewer PA, Macklin MG, Balteanu D, Driga B, Serban M, Zaharia S (2003) The solid state partitioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Appl Geochem 18:1583–1595CrossRefGoogle Scholar
  6. Brinza L, Dring MJ, Gavrilescu M (2007) Marine micro- and macro-algal species as biosorbents for heavy metals. Environ Eng Manag J 6:237–251Google Scholar
  7. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702CrossRefGoogle Scholar
  8. Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36:299–307CrossRefGoogle Scholar
  9. Cobbett C, Goldsbrough P (2002) Phytochelatin and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  10. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. John Wiley & Sons Inc., New YorkGoogle Scholar
  11. Das N (2010) Recovery of precious metals through biosorption—a review. Hydrometallurgy 103:180–189CrossRefGoogle Scholar
  12. de Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technol 101:1611–1627CrossRefGoogle Scholar
  13. de Queiroz JC, de Melo Ferreira AC, da Costa ACA (2012) The growth of Monoraphidium sp. and Scenedesmus sp. cells in the presence of thorium. Sci World J. doi: 10.1100/2012/592721 Google Scholar
  14. Eisler R (1993) Zinc hazard to fish, wildlife, and invertebrates: a synoptic review. Contam Hazard Rev 10:1–126Google Scholar
  15. Felföldy L (1987) A biológiai vízminősítés. 4. kiad. In: Vízügyi Hidrobiológia 16. VGI, Budapest, 258Google Scholar
  16. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225Google Scholar
  17. Fujii K, Nakashima H, Hashidzume Y, Uchiyama T, Mishiro K, Kadota Y (2009) Nutritional profile of Monoraphidium sp. GK12, astaxanthin-producing microalga, and its energy-saving outdoor cultivation. J Biosci Bioeng 108(1):S44CrossRefGoogle Scholar
  18. Fukami M (1988) Effects of zinc on metal metabolism on the zinc tolerant chlorotic mutants of Euglena gracilis. J Agric Biol Chem 52:2343–2344CrossRefGoogle Scholar
  19. Gattullo CE, Bährs H, Steinberg CEW, Loffredo E (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506CrossRefGoogle Scholar
  20. Gold C, Feurtet-Mazel A, Coste M, Boudou A (2003) Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Arch Environ Contam Toxicol 44:189–197CrossRefGoogle Scholar
  21. Hammer Ř, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  22. Hassler CS, Behra R, Wilkinson KJ (2005) Impact of zinc acclimation on bioaccumulation and homeostasis in Chlorella kesslerii. Aquat Toxicol 74:139–149CrossRefGoogle Scholar
  23. Hornstrom E, Harbom A, Edberg F, Andren C (1995) The influence of pH on aluminium toxicity in the phytoplankton species Monoraphidium dybowskii and M. griffithii. Water Air Soil Poll 85(2):817–822CrossRefGoogle Scholar
  24. Horváth B, Gruiz K (1996) Impact of metalliferous ore mining activity on the environment in Gyongyosoroszi, Hungary. Sci Total Environ 184:215–227CrossRefGoogle Scholar
  25. Hussein H, Farag SI, Kamal K, Moawad H (2004) Biosorption of heavy metals from waste water using Pseudomonas sp. Electron J Biotechnol 7(1):39–46CrossRefGoogle Scholar
  26. Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewater: a review. Bioresour Technol 53(3):195–206Google Scholar
  27. Lehmann V, Tubbing GMJ, Admiraal W (1998) Induced metal tolerance in microbenthic communities from three lowland rivers with different metal loads. Arch Environ Contam Toxicol 36:384–391CrossRefGoogle Scholar
  28. Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572CrossRefGoogle Scholar
  29. Malea P, Rijstenbil JW, Haritonidis S (2006) Effects of cadmium, zinc and nitrogen status on non-protein thiols in the macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (N Aegean Sea, Greece). Mar Environ Res 62:45–60CrossRefGoogle Scholar
  30. Monteiro CM, Marques APGC, Castro PML, Malcata FX (2009) Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation 20:629–641CrossRefGoogle Scholar
  31. Monteiro CM, Fonseca SC, Castro PML, Malcata FX (2011a) Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. J Appl Phycol 23:97–103CrossRefGoogle Scholar
  32. Monteiro CM, Castro PML, Malcata FX (2011b) Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environ Chem Lett 9:169–176CrossRefGoogle Scholar
  33. Morin S, Coste M (2006) Metal-induced shifts in the morfology of diatoms from Riou Mort and Riou Vioi streams (South West France). Arch Hydrobiol—Supplement 97–101Google Scholar
  34. Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815CrossRefGoogle Scholar
  35. Muyssen BTA, De Schamphelaere KAC, Janssen CR (2006) Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Aquat Toxicol 77:393–401CrossRefGoogle Scholar
  36. Nacorda JO, Martinez-Goss MR, Torreta NK, Merca FE (2007) Metal resistance and removal by two strains of the green alga, Chlorella vulgaris Beijerinck, isolated from Laguna de Bay, Philippines. J Appl Phycol 19:701–710CrossRefGoogle Scholar
  37. Nishikawa K, Tominaga N (2001) Isolation, growth, ultrastructure, and metal tolerance of the green alga Chlamydomonas acidophila (Chlorophyta). Biosci Biotechnol Biochem 65:2650–2656CrossRefGoogle Scholar
  38. Ódor L, Richard BW, Horváth I, Fügedi U (1998) Mobilization and attenuation of metals downstream from a base-metal mining site in the Mátra Mountains, northeastern Hungary. J Geochem Explor 65:47–60CrossRefGoogle Scholar
  39. Omar HH (2002) Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Int biodeterior Biodegrad 50:95–100CrossRefGoogle Scholar
  40. Palmieria MC, Garcia O, Melnikov P (2000) Neodymium biosorption from acidic solutions in batch system. Process Biochem 36:441–444CrossRefGoogle Scholar
  41. Pawlik-Skowrońska B (2003) Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kütz. coming from habitats of different heavy metal concentrations. Aquat Bot 75:189–198CrossRefGoogle Scholar
  42. Perales-Vela HV, Pena-Castro JM, Canizares-Villaneuva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10CrossRefGoogle Scholar
  43. Perovic S, Tretter L, Brummer F, Wetzler C, Brenner J, Donner G, Schroder HC, Muller WEG (2000) Dinoflagellates from marine algal blooms produce neurotoxic compounds: effects on free calcium levels in neuronal cells and synaptosomes. Environ Toxicol Pharmacol 8(2):83–94CrossRefGoogle Scholar
  44. Pradhan S, Sing S, Rai LC, Parker DL (1998) Evaluation of metal biosorption efficiency of laboratory-grown Microcystis under various environmental conditions. J Microbiol Biotechnol 8:53–60Google Scholar
  45. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353CrossRefGoogle Scholar
  46. Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26:223–235CrossRefGoogle Scholar
  47. Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353CrossRefGoogle Scholar
  48. Schmitt D, Müller A, Csögör Z, Frimmel FH, Posten C (2001) The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Res 35:779–785CrossRefGoogle Scholar
  49. Sugarman B (1983) Zinc and infection. Rev Infect Dis 5:137CrossRefGoogle Scholar
  50. Takami R, Almeida JV, Vardaris CV, Colepicolo P, Barros MP (2012) The interplay between thiol-compounds against chromium (VI) in the freshwater green alga Monoraphidium convolutum: toxicology, photosynthesis, and oxidative stress at a glance. Aquat Toxicol 118–119:80–87CrossRefGoogle Scholar
  51. Travieso L, Canizares RO, Borja R, Benitez F, Dominguez AR, Dupeyron R, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62:144–151CrossRefGoogle Scholar
  52. Tripathi BN, Gaur JP (2004) Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404CrossRefGoogle Scholar
  53. Tripathi BN, Gaur JP (2006) Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 229:1–9CrossRefGoogle Scholar
  54. Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamotoa K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659CrossRefGoogle Scholar
  55. Vasas G, Bácsi I, Surányi G, Hamvas MM, Mathe C, Nagy SA, Borbely G (2010) Isolation of viable cell mass from frozen Microcystis viridis bloom containing microcystin-RR. Hydrobiologia 639:147–151CrossRefGoogle Scholar
  56. Vasas G, M-Hamvas M, Borics G, Gonda S, Mathe C, Jambrik K, Nagy ZL (2012) Occurrence of toxic Prymnesium parvum blooms with high protease activity is related to fish mortality in Hungarian ponds. Harmful Algae 17:102–110CrossRefGoogle Scholar
  57. Vasas G, Farkas O, Borics G, Felföldi T, Sramkó G, Batta G, Bácsi I, Gonda S (2013) Appearance of Planktothrix rubescens Bloom with [D-Asp3, Mdha7]MC–RR in Gravel Pit Pond of a Shallow Lake-dominated area. Toxins 5:2434–2455CrossRefGoogle Scholar
  58. Vavilin DV, Ducruet JM, Matorin DN, Venediktov PS, Rubin AB (1998) Membrane lipid peroxidation, cell viability and photosystem II activity in the green alga Chlorella pyrenoidosa subjected to various stress conditions. J Photochem Photobiol B Biol 42:233–239CrossRefGoogle Scholar
  59. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655CrossRefGoogle Scholar
  60. Visviki I, Rachlin JW (1991) The toxic action and interactions of copper and cadmium to the marine alga Dunaliella minuta, in both acute and chronic exposure. Arch Environ Contam Toxicol 20:271–275CrossRefGoogle Scholar
  61. Volesky B (1990a) Biosorption and biosorbents. In: Biosorption of heavy metals. CRC press, BostonGoogle Scholar
  62. Volesky B (1990b) Removal and recovery of heavy metals by biosorption. In: Biosorption of heavy metals. CRC press, BostonGoogle Scholar
  63. Wang JL, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotech Adv 27:195–226CrossRefGoogle Scholar
  64. Yang X, Liu P, Hao Z, Shi J, Zhang S (2012) Characterization and identification of freshwater microalgal strains toward biofuel production. Bioresources 7(1):686–695Google Scholar
  65. Yu X, Zhao P, He C, Li J, Tang X, Zhou J, Huang Z (2012) Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresour Technol 121:256–262CrossRefGoogle Scholar
  66. Zar JH (1996) Biostatical analysis, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  67. Zhang QC, Qiu LM, Yu RC, Kong FZ, Wang YF, Yan T, Gobler CJ, Zhou MJ (2012) Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae 19:117–124CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2014

Authors and Affiliations

  • I. Bácsi
    • 1
    Email author
  • Z. Novák
    • 1
  • M. Jánószky
    • 2
  • V. B-Béres
    • 2
  • I. Grigorszky
    • 1
  • S. A. Nagy
    • 1
  1. 1.Department of HydrobiologyUniversity of DebrecenDebrecenHungary
  2. 2.Environmental Protection and Nature Conservation AuthorityDebrecenHungary

Personalised recommendations