The potential of carbon dioxide emission reductions in German commercial transport by electric vehicles

Original Paper

Abstract

Climate change is a serious challenge of today. In order to reach the ambiguous mitigation scenarios for greenhouse gases, strong efforts are to be undertaken. Electric vehicles are seen as a potential mean to reduce emissions and energy import dependencies of most western societies. So far, the progress toward more electric vehicles in individual passenger transport is still slow. The objective to increase the share of electric vehicles of many national governments seems to be rather ambitious. In commercial transport, mileage is usually higher, trips are planned more precisely, and driving patterns are more regular than those of private vehicles. With these and other promising factors, we assume a high potential of electric vehicles in commercial transport. Therefore, we analyze in this paper the commercial transport in Germany and especially the large share of light commercial vehicles in order to make these potentials explicit. Based on German survey data, we analyze the heterogeneous German economic sectors with top-down statistical values like daily distance categories and bottom-up values like driving and parking behaviors. By way of example, German postal services are evaluated in detail, which leads to an electrification potential of between 60,750 and 105,550 vehicles. In case of “green” electricity for charging, postal services can avoid up to 882,000 \({\text{t}}_{{{\text{CO}}_{ 2} }} /{\text{a}}\), which is about 40–70 %.

Keywords

Emission reduction potential Electric mobility Commercial transport in Germany Sectoral analysis Postal services 

References

  1. Abt D (1998) Die Erklärung der Technikgenese des Elektroautomobils. Dissertation, University of Frankfurt (Main), GermanyGoogle Scholar
  2. Al-Alawi BM, Bradley TH (2013) Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles. Appl Energ 103:488–506. doi:10.1016/j.apenergy.2012.10.009 CrossRefGoogle Scholar
  3. Alam JB, Wadud Z, Polak W (2013) Energy demand and economic consequences of transport policy. Int J Environ Sci Technol 10:1075–1082. doi:10.1007/s13762-013-0240-1 CrossRefGoogle Scholar
  4. Amjad S, Neelakrishnan S, Rudramoorthy R (2010) Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles. Renew Sustain Energ Rev 14:1104–1110. doi:10.1016/j.rser.2009.11.001 CrossRefGoogle Scholar
  5. B.A.U.M. (2012) Ergebnisbericht zum Förderprogramm IKT für Elektromobilität. German Federal Ministry of Economics and Technology, Berlin, GermanyGoogle Scholar
  6. BBSR (2011) Laufende Raumbeobachtung – Raumabgrenzungen. German Federal Institute for Research on Building, Urban Affairs and Spatial Development, Berlin, GermanyGoogle Scholar
  7. Berg MR (1985) The potential market for electric vehicles: results from a national survey of commercial fleet operators. Transport Res Rec 1049:70–78Google Scholar
  8. Bertoldi P, Rezessy S, Anable J, Jochem P, Oikonomou V (2011) Energy saving obligations and white certificates: ideas and considerations for the transport sector. Int J Sustain Transp 5(6):345–374. doi:10.1080/15568318.2010.545472 CrossRefGoogle Scholar
  9. BMVBS (2011a) Ergebnisbericht 2011 der Modellregionen Elektromobilität. German Federal Ministry of Transport, Building and Urban Development, Berlin, GermanyGoogle Scholar
  10. BMVBS (2011b) Verkehr in Zahlen 2010/2011. German Federal Ministry of Transport, Building and Urban Development, Berlin, GermanyGoogle Scholar
  11. BMWi (2008) Dienstleistungsverkehr in industriellen Wertschöpfungsketten—final report. German Federal Ministry of Economics and Technology, Berlin, GermanyGoogle Scholar
  12. BMWi (2012) Regierungsprogramm Elektromobilität – Übersicht zu umgesetzten oder initiierten Maßnahmen. German Federal Ministry of Economics and Technology, Berlin, GermanyGoogle Scholar
  13. Brauner G, Geringer B, Schrödl M (2012) Forschungsbedarf für das Elektrofahrzeug der Zukunft. e & i. Elektrotechnik und Informationstechnik 129:110–117. doi:10.1007/s00502-012-0088-y CrossRefGoogle Scholar
  14. Daimler (2013) Verbrauchs- und Emissionswerte des Vito 110 CDI. http://www.mercedes-benz.de. Accessed 5 December 2013
  15. DATELINE (2004) Design and application of a travel survey for European long-distance trips based on an international network of expertise (dateline). Institute for Transport Planning and Systems, Zurich, SwitzerlandGoogle Scholar
  16. Deneke K (2004) Nutzungsorientierte Fahrzeugkategorien im Straßenwirtschaftsverkehr – Eine multidimensionale Analyse kraftfahrzeugbezogener Mobilitätsstrukturen. Dissertation, Technical University of Braunschweig, GermanyGoogle Scholar
  17. Destatis (2008) Klassifikation der Wirtschaftszweige. German Federal Statistical Office, Wiesbaden, GermanyGoogle Scholar
  18. Ensslen A, Jochem P, Schäuble J, Babrowski S, Fichtner W (2013) User acceptance of electric vehicles in the French-German transnational context. In: Selected proceedings of the 13th WCTR, Rio de Janeiro, Brazil 15–18 JulyGoogle Scholar
  19. European Commission (2011) A Roadmap for moving to a competitive low carbon economy in 2050. European Commission, BrusselsGoogle Scholar
  20. European Commission (2012) EU transport in figures—statistical pocketbook 2012. European Commission, LuxembourgGoogle Scholar
  21. Eurostat (2008) NACE Rev. 2—statistical classification of economic activities in the European Community. European Commission, Brussels, BelgiumGoogle Scholar
  22. Eurostat (2012) Energy statistics—prices. European Commission, BrusselsGoogle Scholar
  23. Eurostat (2013) Greenhouse gas emissions by sector. European Commission, BrusselsGoogle Scholar
  24. Feng W, Figliozzi MA (2012) Conventional vs. electric commercial vehicle fleets: a case study of economic and technological factors affecting the competitiveness of electric commercial vehicles in the USA. Procedia Soc Behav Sci 39:702–711. doi:10.1016/j.sbspro.2012.03.141 CrossRefGoogle Scholar
  25. Figliozzi MA, Boudart JA, Feng W (2011) Economic and environmental optimization of vehicle fleets. Transp Res Rec 2252:1–6. doi:10.3141/2252-01 CrossRefGoogle Scholar
  26. German Federal Government (2009) Nationaler Entwicklungsplan Elektromobilität der Bundesregierung. German Federal Government, BerlinGoogle Scholar
  27. German Federal Government (2010) Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. German Federal Government, BerlinGoogle Scholar
  28. Gnann T, Haag M, Plötz P, Wietschel M (2013) Market potential for electric vehicles in the German commercial passenger transport sector. In: Proceedings of EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain 17–20 NovemberGoogle Scholar
  29. Hacker F, Harthan R, Hermann H, Kasten P, Loreck C, Seebach D, Timpe C, Zimmer W, Leppler S, Möck A (2011) Betrachtung der Umweltentlastungspotenziale durch den verstärkten Einsatz von kleinen, batterieelektrischen Fahrzeugen im Rahmen des Projekts ’E-Mobility’ – Schlussbericht. Oeko-Institut e.V., German Federal Ministry of Transport, Building and Urban Development, Freiburg and Berlin, GermanyGoogle Scholar
  30. Hautzinger H, Stock W, Mayer K, Schmidt J, Heidemann D (2005) Fahrleistungserhebung 2002 – Inländerfahrleistung. Wirtschaftsverlag NW, BremenGoogle Scholar
  31. Hebes P (2011) Die Rolle von Unternehmen beim Verkehrsverhalten im Personenwirtschaftsverkehr. Dissertation, Humbold University of Berlin, GermanyGoogle Scholar
  32. Heinrichs HU (2013) Analyse der langfristigen Auswirkungen von Elektromobilität auf das deutsche Energiesystem im europäischen Energieverbund. KIT Scientific Publishing, KarlsruheGoogle Scholar
  33. Hu PS, Reuscher TR (2004) Summary of travel trends—2001 national household travel survey. http://nhts.ornl.gov/2001/pub/STT.pdf. Accessed 25 March 2013
  34. ICCT (2013) Reducing CO2 and fuel consumption: a summary of the technology potential for new cars in the EU, International Council on Clean TransportationGoogle Scholar
  35. IEA (2009) Technology roadmap: electric and plug-in hybrid electric vehicles. International Energy Agency, ParisGoogle Scholar
  36. IEA (2011) Technology roadmap—electric and plug-in hybrid electric vehicles. International Energy Agency, ParisGoogle Scholar
  37. IEA (2013) World energy outlook 2013, international energy agency. France, ParisCrossRefGoogle Scholar
  38. IKA (2012) CO2-Reduzierungspotenziale bei Pkw bis 2020. Institut für Kraftfahrzeuge, Strategie und Beratung, RWTH Aachen University, GermanyGoogle Scholar
  39. Kaschub T, Paetz AG, Jochem P, Fichtner W (2012) Feasibility of battery switch stations for local emission free public transport. In: ENERDAY 7th Conference on Energy Economics and Technology, Dresden, GermanyGoogle Scholar
  40. Kay D, Hill N, Newman D (2013) Powering Ahead—The future of low-carbon cars and fuels. UK Petroleum Industry Association. http://www.theengineer.co.uk/Journals/2013/04/22/i/k/h/powering_ahead-kay_et_al-apr.2013-embargoed_copy.pdf. Accessed 30 November 2013
  41. KBA (2010) Verkehr deutscher Lastkraftfahrzeuge (VD) – Güterbeförderung. German Federal Motor Transport Authority, Flensburg, GermanyGoogle Scholar
  42. KBA (2011) Fahrzeugzulassungen (FZ) – Bestand an Kraftfahrzeugen und Kraftfahrzeuganhängern nach Haltern und Wirtschaftszweigen. German Federal Motor Transport Authority, Flensburg, GermanyGoogle Scholar
  43. KBA (2013) Der Fahrzeugbestand im Überblick am 1. Januar 2013 gegenüber 1. Januar, 2012. German Federal Motor Transport Authority, Flensburg, GermanyGoogle Scholar
  44. KiD (2003) Kraftfahrzeugverkehr in Deutschland—KiD 2002—final report. German Federal Motor Transport Authority, Flensburg, GermanyGoogle Scholar
  45. KiD (2012a) Kraftfahrzeugverkehr in Deutschland 2010—KiD 2010—final report. German Federal Ministry of Transport, Building and Urban Development, Berlin, GermanyGoogle Scholar
  46. KiD (2012b) Kraftfahrzeugverkehr in Deutschland 2010—KiD 2010—Ergebnisse im Überblick. German Federal Motor Transport Authority, Flensburg, GermanyGoogle Scholar
  47. Kley F (2011) Ladeinfrastrukturen für Elektrofahrzeuge – Entwicklung und Bewertung einer Ausbaustrategie auf Basis des Fahrverhaltens. Dissertation. Karlsruhe Institute of Technology, GermanyGoogle Scholar
  48. Köhler U (2009) Applications–transportation–hybrid electric vehicles: batteries. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 269–285Google Scholar
  49. Liao CH, Chang CL, Su CY, Chiueh PT (2013) Correlation between land-use change and greenhouse gas emissions in urban areas. Int J Environ Sci Techno. 10:1275–1286. doi:10.1007/s13762-012-0155-2 CrossRefGoogle Scholar
  50. Ligterink NE, Smokers RTM, Bolech M (2013) Fuel-electricity mix and efficiency in Dutch plug-in and range-extender vehicles on the road. In: Proceedings of EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain 17–20 NovemberGoogle Scholar
  51. Machledt-Michael S (2000) Fahrtenkettenmodell für den städtischen und regionalen Wirtschaftsverkehr, Dissertation, Technical University of Braunschweig, GermanyGoogle Scholar
  52. Madre JL, Kuhnimhof T, Armoogum J, Last J, Sender, F (2007) Deliverable d3 existence and comparability of data sources. Institut National de Recherche sur les Transports et leur Securite and STRATA GmbH – Data and Information Management, Paris and Karlsruhe, France and GermanyGoogle Scholar
  53. Menge J (2011) Personenwirtschaftsverkehr im Prozess der Dienstleistungserstellung -Ursachen, Strukturen und räumliche Muster. Dissertation, Humbold University of Berlin, GermanyGoogle Scholar
  54. MiD (2010) Mobilität in Deutschland 2008 – Kurzbericht – Struktur – Aufkommen – -Emissionen – Trends. German Federal Ministry of Transport, Building and Urban Development, Berlin, GermanyGoogle Scholar
  55. Mock P (2010) Entwicklung eines Szenariomodells zur Simulation der zukünftigen Marktanteile und CO2-Emissionen von Kraftfahrzeugen (VECTOR21). Dissertation, University of Stuttgart, GermanyGoogle Scholar
  56. NIST (2009) Nist framework and roadmap for smart grid interoperability standards. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  57. NPE (2010) Zwischenbericht der Nationalen Plattform Elektromobilität. National Platform for Electromobility, BerlinGoogle Scholar
  58. NPE (2011) Zweiter Bericht der Nationalen Plattform Elektromobilität. National Platform for Electromobility, BerlinGoogle Scholar
  59. NPE (2012) Fortschrittsbericht der Nationalen Plattform Elektromobilität (Dritter Bericht). National Platform for Electromobility, BerlinGoogle Scholar
  60. OECD (2012) Transport outlook 2012. Organization for Economic Co-operation and Development, ParisCrossRefGoogle Scholar
  61. Paetz AG, Kaschub T, Kopp M, Jochem P, Fichtner W (2013) Monetäre Anreize zur Steuerung der Ladelast von Elektrofahrzeugen – eine modellgestützte Optimierung. Zeitschrift für Energiewirtschaft 37:1–12. doi:10.1007/s12398-012-0095-z CrossRefGoogle Scholar
  62. Parker C (2009) Batteries—codes and standards. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 539–543Google Scholar
  63. Pehnt M, Helms H, Lambrecht U, Dallinger D, Wietschel M, Heinrichs H, Kohrs R, Link J, Trommer S, Pollok T, Behrens P (2011) Elektroautos in einer von erneuerbaren Energien geprägten Energiewirtschaft. Zeitschrift für Energiewirtschaft 35:221–234. doi:10.1007/s12398-011-0056-y CrossRefGoogle Scholar
  64. Pfahl S, Jochem P, Fichtner W (2013) When will Electric Vehicles Capture the German Market? And Why? In: Proceedings of EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain 17–20 NovemberGoogle Scholar
  65. Plötz P, Gnann T, Wietschel M (2012) Total ownership cost projection for the German electric vehicle market with implications for its future power and electricity demand. In: ENERDAY 7th Conference on Energy Economics and Technology, Dresden, Germany 27 AprilGoogle Scholar
  66. Pregger T, Tena DL, O’Sullivan M, Roloff N, Schmid S, Propfe B, Hülsebusch D, Wille-Haussmann B, Schwunk S, Wittwer C, Pollok T, Krahl S, Moormann A (2012) Perspektiven von Elektro-/Hybridfahrzeugen in einem Versorgungssystem mit hohem Anteil dezentraler und erneuerbarer Energiequellen. German Federal Ministry of Economics and Technology, BerlinGoogle Scholar
  67. Proff H, Kilian D (2012) Competitiveness of the EU automotive industry in electric vehicles. University of Duisburg-Essen, DuisburgGoogle Scholar
  68. RITA (2010) Freight transportation: global highlights 2010. US Department of Transportation, WashingtonGoogle Scholar
  69. Santos A, McGuckin N, Nakamoto HY, Gray D, Liss S (2011) Summary of travel trends—2009 national household travel survey. US Department of Transportation, WashingtonGoogle Scholar
  70. Schütte FP (1995) Mobilitätsprofile im städtischen Personenwirtschaftsverkehr. Dissertation, University of Dortmund, GermanyGoogle Scholar
  71. Schwerdtfeger W (1976) Städtischer Lieferverkehr: Bestimmungsgründe, Umfang und Ablauf des Lieferverkehrs von Einzelhandels- und Dienstleistungsbetrieben. Dissertation, Technical University Braunschweig. GermanyGoogle Scholar
  72. Sharma R, Manzie C, Bessede M, Brear MJ, Crawford RH (2012) Conventional, hybrid and electric vehicles for australian driving conditions—part 1: technical and financial analysis. Transport Res C Emerg 25:238–249. doi:10.1016/j.trc.2012.06.003 CrossRefGoogle Scholar
  73. Steinmeyer I (2004) Zur Datenlage und Notwendigkeit der Modellierung von Wirtschaftsverkehr in Städten und Regionen. In: 1. Europäisches Kommunalpolitisches Verkehrsforum – Wirtschaftsverkehr in Städten – Wege aus der Krise. German Association of Transport Sciences, Berlin, GermanyGoogle Scholar
  74. UBA (2013) Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 bis 2012. Federal Environment Agency, Dessau-RoßlauGoogle Scholar
  75. UN (1998) The kyoto protocol to the United Nations framework convention on climate change (UNCCC). United Nations, KyotoGoogle Scholar
  76. UN (2008) International standard industrial classification of all economic activities (isic) Rev. 4. United Nations, New York, USAGoogle Scholar
  77. Uslar M, Beenken P, Busemann C, Gonzáles JM, Kamenik J, Mayer C, Niesse A, Rohjans S, Schmedes T, Specht M, Weidelt T, Schwarz K, Hein F (2009) Untersuchung des Normungsumfeldes zum BMWi-Förderschwerpunkt ”e-Energy – IKT-basiertes Energiesystem der Zukunft”. German Federal Ministry of Economics and Technology, BerlinGoogle Scholar
  78. Uslar M, Rohjans S, Gonzalez J, Specht M, Trefke J (2011) Das Standardisierungsumfeld im Smart Grid – Roadmap und Outlook. e&i. Elektrotechnik und Informationstechnik 128:135–140. doi:10.1007/s00502-011-0818-6 CrossRefGoogle Scholar
  79. van Dender K (2009) Energy policy in transport and transport policy. Energ Policy 37:3854–3862. doi:10.1016/j.enpol.2009.07.008 CrossRefGoogle Scholar
  80. van Vliet O, Brouwer AS, Kuramochi T, van den Broek M, Faaij A (2011) Energy use; cost and CO2 emissions of electric cars. J Power Sources 196:2298–2310. doi:10.1016/j.jpowsour.2010.09.119 CrossRefGoogle Scholar
  81. Wairaich RA, Galus MD, Dobler C, Balmer M, Andersson G, Axhausen KW (2013) Plug-in hybrid electric vehicles and smart grids: investigations based on a microsimulation. Transport Res C Emerg 28:74–86. doi:10.1016/j.trc.2012.10.011 CrossRefGoogle Scholar
  82. Walvekar PP, Gurjar BR (2012) Formulation, application and evaluation of a stack emission model for coal-based power stations. Int J Environ Sci Technol. doi:10.1007/s13762-012-0131-x Google Scholar
  83. Wermuth M (2006) Der Wirtschaftsverkehr auf Deutschlands Straßen – Stimmen unsere bisherigen Vermutungen? Straßenverkehrstechnik 50:5–14Google Scholar
  84. WTO (2012) International trade statistics 2012. World Trade Organization, GenevaGoogle Scholar
  85. Zumkeller D, Kagerbauer M, Streit T, Vortisch P, Chlond B, Wirtz M (2011) Deutsches Mobilitätspanel (MOP) wissenschaftliche Begleitung und erste Auswertungen – Bericht 2011: Alltagsmobilität & Tankbuch. Karlsruhe Institute of Technology, KarlsruheGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2014

Authors and Affiliations

  • T. Ketelaer
    • 1
  • T. Kaschub
    • 2
  • P. Jochem
    • 2
  • W. Fichtner
    • 2
  1. 1.Institute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE)Forschungszentrum JülichJülichGermany
  2. 2.Chair of Energy Economics, Institute for Industrial Production (IIP)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations