Plant colonization of brownfield soil and post-washing sludge: effect of organic amendment and environmental conditions

  • P. Adamo
  • A. MingoEmail author
  • I. Coppola
  • R. Motti
  • A. Stinca
  • D. Agrelli
Original Paper


This paper analyses the effects of substrate properties and environmental conditions on spontaneous vegetation of soil and sludges from a dismantled steel plant moderately polluted by heavy metals and polycyclic aromatic hydrocarbons. Plant colonization was monitored in the presence or absence of acidic peat for 5 years both inside the degraded brownfield site and after transferral into a nearby Oak Park environment. Overall, 57 plant species grew healthily on the substrates, with peat enhancing plant growth in the unfavourable brownfield site. Most of the species were found in the park (91 %), showing plant colonization was mainly affected by the immediate environment rather than by substrate properties. Restricted metal uptake and tissue accumulation by selected plants were measured, with only Daucus carota showing a higher ability to translocate metals to shoots (shoot/root metal concentration quotient >1 with peat). Phytostabilization with native plants represents an economically more realistic and cost-effective option than excavation, soil washing and sludge disposal, especially for vast industrial sites. Addition of organic matter and planting strategically selected vegetation islands could facilitate the spontaneous recovery of such highly degraded environments.


Phytoremediation Heavy metals Polycyclic aromatic hydrocarbons Vascular flora Peat 



Thanks are due to the ILVA staff, for supplying the soil and sludge and for help given in setting up the experiment, and to head and technical personnel of the Royal Park of Portici, for hosting the experiment and for collaboration. This research was supported in part by the University of Napoli Federico II via a doctoral scholarship and the Italian Ministry of Universities and Scientific and Technological Research (PRIN project 2005075734-2005).


  1. Adamo P, Arienzo M, Bianco MR, Terribile F, Violante P (2002) Heavy metal contamination of the soils used for stocking raw materials in the former ILVA iron–steel industrial plant of Bagnoli (southern Italy). Sci Total Environ 295(1–3):17–34CrossRefGoogle Scholar
  2. Albanese S, De Vivo B, Lima A, Cicchella D, Civitillo D, Cosenza A (2010) Geochemical baselines and risk assessment of the Bagnoli brownfield site coastal sea sediments (Naples, Italy). J Geochem Explor 105:19–33CrossRefGoogle Scholar
  3. Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ 319(1–3):13–25CrossRefGoogle Scholar
  4. Baker AJM (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  5. Bargagli R (1998) Trace elements in terrestrial plants. Springer, BerlinGoogle Scholar
  6. Brown PA, Gill SA, Allen SJ (2000) Metal removal from wastewater using peat. Water Res 34(16):3907–3916CrossRefGoogle Scholar
  7. Buondonno C, Ermice A, Buondonno A, Murolo M, Pugliano ML (1998) Human-influenced soils from an iron and steel works in Naples, Italy. Soil Sci Soc Am J 62(3):694–700CrossRefGoogle Scholar
  8. CIPE (Comitato Interministeriale per la Programmazione Economica) (1994) Delibera n.145 del 20/12/1994. Provvedimenti attuativi per il Piano di Sviluppo Triennale della Campania (Legge n. 80/849)Google Scholar
  9. Conesa HM, Faz A, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66(1):38–44CrossRefGoogle Scholar
  10. Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi Editori, RomaGoogle Scholar
  11. Conti F, Alessandrini A, Bacchetta G, Banfi E, Barberis G, Bartolucci F, Bernardo L, Bonacquisti S, Bouvet D, Bovio M, Brusa G, Del Guacchio E, Foggi B, Frattini S, Galasso G, Gallo L, Gangale C, Gottschlich G, Grünanger P, Gubellini L, Iiriti G, Lucarini D, Marchetti D, Moraldo B, Peruzzi L, Poldini L, Prosser F, Raffaelli M, Santangelo A, Scassellati E, Scortegagna S, Selvi F, Soldano A, Tinti D, Ubaldi D, Uzunov D, Vidali M (2007) Integrazioni alla checklist della flora vascolare italiana. Natura Vicentina 10:5–74Google Scholar
  12. Córdova S, Neaman A, González I, Ginocchio R, Fine P (2011) The effect of lime and compost amendments on the potential for the revegetation of metal-polluted, acidic soils. Geoderma 166(1):135–144CrossRefGoogle Scholar
  13. Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. Vitro Cell Dev Biol 29(4):207–212CrossRefGoogle Scholar
  14. Daniele L (2000) Geochimica degli elementi metallici nelle acque sotterranee dell’isola d’Ischia: Esempio di prospezione nel settore occidentale : Tesi di Laurea. Università Federico II, NapoliGoogle Scholar
  15. De Vivo B, Lima A (2008) Characterization and remediation of a brownfield site: the Bagnoli case in Italy. In: De Vivo B, Belkin HE, Lima A (eds) Environmental geochemistry: site characterization, data analysis and case histories. Elsevier, Amsterdam, pp 355–385Google Scholar
  16. Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152(1):1–31CrossRefGoogle Scholar
  17. Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41(10):2031–2037CrossRefGoogle Scholar
  18. Gomez-Aparicio L (2009) The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and ecosystem. J Ecol 97(6):1202–1214CrossRefGoogle Scholar
  19. Hammer D, Keller C (2002) Changes in the rizosphere of metal-accumulating plants evidenced by chemical extractants. J Environ Qual 31(5):1561–1569CrossRefGoogle Scholar
  20. Italian Parliament (2000) Legge 23 Dicembre 2000, n. 388. Disposizioni per la formazione del bilancio annuale e pluriennale dello Stato (legge finanziaria 2001). Gazzetta Ufficiale della Repubblica Italiana n. 302, Supplemento Ordinario n. 219, del 29 dicembre 2000Google Scholar
  21. Italian Parliament (2006) Decreto Legislativo 3 Aprile 2006, n. 152. Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana n. 88, Supplemento Ordinario n. 96, del 14 Aprile 2006Google Scholar
  22. Jordanova D, Goddu SR, Kotsev T, Jordanova N (2013) Industrial contamination of alluvial soils near Fe–Pb mining site revealed by magnetic and geochemical studies. Geoderma 192:237–248CrossRefGoogle Scholar
  23. Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press Inc., FloridaGoogle Scholar
  24. Khairy MA, Kolb M, Mostafa AR, EL-Fiky A, Bahadir M (2009) Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed basin affected by human activities (Abu Qir Bay, Egypt). J Hazard Mater 170:389–397CrossRefGoogle Scholar
  25. Kumpiene J, Lagerkvist A, Maurice C (2007) Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environ Pollut 145(1):365–373CrossRefGoogle Scholar
  26. Lima A, Daniele L, De Vivo B, Sava A (2001) Minor and trace elements investigation on thermal groundwaters of Ischia Island (Southern Italy). In: Cidu R (ed) Proceedings of water–rock intercation-10’’, vol 2. Balkema, Rotterdam, pp 981–984Google Scholar
  27. Lima A, Cicchella D, Di Francia S (2003) Natural contribution of harmful elements in thermal groundwaters of Ischia island (southern Italy). Environ Geol 43:930–940Google Scholar
  28. Madejón E, Pérez de Mora A, Felipe E, Burgos P, Cabrera F (2006) Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut 139(1):40–52CrossRefGoogle Scholar
  29. Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654CrossRefGoogle Scholar
  30. McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32(1):12–16Google Scholar
  31. Motti R, Ricciardi M (2005) La flora dei Campi Flegrei. Webbia 60(2):395–476CrossRefGoogle Scholar
  32. Motti R, Stinca A (2011) Analysis of the biodeteriogenic vascular flora at the Royal Palace of Portici in southern Italy. Int Biodeterior Biodegrad 65(8):1256–1265CrossRefGoogle Scholar
  33. Nasta P, Kamai T, Chirico GB, Hopmans JW, Romano N (2009) Scaling soil water retention functions using particle-size distribution. J Hydrol 374(3–4):223–234CrossRefGoogle Scholar
  34. Pignatti S (1982) Flora d’Italia 1-3. Edagricole, BolognaGoogle Scholar
  35. Podani J (2001) SYN-TAX 2000. Computer programs for data analysis in ecology and systematics. User’s manual. Scientia Publishing, Budapest, HungaryGoogle Scholar
  36. Raunkiaer C (1934) The life forms and statistical plant geography. Oxford Clarendon Press, OxfordGoogle Scholar
  37. Sardans J, Peñuelas J (2005) Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill in Catalonia. Chemosphere 60(9):1293–1307CrossRefGoogle Scholar
  38. Sierra C, Gallego JR, Afif E, Menéndez-Aguado JM, González-Coto F (2013) Analysis of soil washing effectiveness to remediate a brownfield polluted with pyrite ashes. J Hazard Mater 180(1–3):602–608Google Scholar
  39. Stinca A, Motti R (2009) The vascular flora of the Royal Park of Portici (Naples, Italy). Webbia 64(2):235–266CrossRefGoogle Scholar
  40. Stinca A, D’Auria G, Motti R (2012) Integrazioni alla flora vascolare aliena della Campania (Sud Italia). Inf Bot Italiano 44(2):287–293Google Scholar
  41. Sun TR, Cang L, Wang QY, Zhou DM, Cheng JM, Xu H (2010) Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. J Hazard Mater 176(1–3):919–925CrossRefGoogle Scholar
  42. Tarzia M, De Vivo B, Somma R, Ayuso RA, McGill RAR, Parrish RR (2002) Anthropogenic vs. natural pollution: an environmental study of an industrial site under remediation (Naples, Italy). Geochem: Explor Environ, Anal 2(1):45–56Google Scholar
  43. Thornton G, Franz M, Edwards D, Pahlen G, Nathanail P (2007) The challenge of sustainability: incentives for brownfield regeneration in Europe. Environ Sci Policy 10(2):116–134CrossRefGoogle Scholar
  44. Tukey JW (1970) Exploratory data analysis. Addison–Wesley, preliminary editionGoogle Scholar
  45. Tukey JW (1977) Exploratory data analysis. Addison–Wesley, ReadingGoogle Scholar
  46. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1964–1980) Flora Europaea 1-5. Cambridge University Press, CambridgeGoogle Scholar
  47. Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1993) Flora Europaea 1, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  48. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38CrossRefGoogle Scholar
  49. Zaidi A, Wani PA, Khan MS (2012) Toxicity of heavy metals to legumes and bioremediation. Springer, WienCrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2014

Authors and Affiliations

  • P. Adamo
    • 1
  • A. Mingo
    • 1
    Email author
  • I. Coppola
    • 1
  • R. Motti
    • 1
  • A. Stinca
    • 1
  • D. Agrelli
    • 1
  1. 1.Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly

Personalised recommendations