Skip to main content
Log in

A low-cost sorbent for removal of copper ions from wastewaters based on sawdust/fly ash mixture

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, a low-cost sorbent prepared from mixed local conifer sawdust (SW) and fly ash (FA) provided by a Romanian power plant was developed. On the basis of the preliminary studies, both materials were qualified as suitable sorbents for the removal of copper ions; however, the sorption capacity and material structures of the SW is influenced by the FA. Therefore, a sorbent based on SW–FA mixture is proposed in this study for the removal of copper ions to improve the efficiency of the SW alone. The sorption capacity of the novel sorbent toward Cu(II) ion removal from aqueous solution has been investigated by employing the regression modeling techniques. In order to describe the sorption equilibrium, the obtained data were fitted using the classical isotherm models. In addition, the experimental design and response surface methodology have been applied for modeling and optimization of the Cu(II) removal process. The operational parameters used in the experimental design were as follows: the initial copper concentration, pH of initial solution and sorbent dose. The maximum removal efficiency of Cu(II) was 79.56 %, which was experimentally validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acar FN, Eren Z (2006) Removal of Cu (II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J Hazard Mater 137:909–914

    Article  CAS  Google Scholar 

  • Ajmal M, Khan AH, Ahmad S, Ahmad A (1998) Role of sawdust in the removal of copper (II) from industrial wastes. Water Res 32(10):3085–3091

    Article  CAS  Google Scholar 

  • Akhnazarova S, Kafarov V (1982) Experiment optimization in chemistry and chemical engineering. Mir Publishers, Moscow

    Google Scholar 

  • Alkam S, Yu-Hui Z, Dubey P, Margrave JL, Shyam SS (2002) The role of sawdust in the removal of unwanted materials from water. J Hazard Mater 95:137–152

    Article  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology as a tool for optimization in analytical chemistry. Talanta 76(5):965–977

    Article  CAS  Google Scholar 

  • Brown PA, Gill SA, Allen SJ (2000) Metal removal from wastewater using peat. Water Res 34(16):3907–3916

    Article  CAS  Google Scholar 

  • Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28(6):792–801

    Article  CAS  Google Scholar 

  • Buema G, Cimpeanu SM, Sutiman DM, Rusu L, Creţescu I, Ciocîntă RC, Harja M (2013) Lead removal from aqueous solution by bottom ash. J Food Agric Environ 11(1):1137–1141

    CAS  Google Scholar 

  • Chen JP, Wu S (2004) Simultaneous adsorption of copper ions and humic acid onto an activated carbon. J Colloid Interface Sci 280(2):334–342

    Article  CAS  Google Scholar 

  • Cicek E, Cojocaru C, Zakrzewska-Trznadel G, Jaworska A, Harasimowicz M (2008) Response surface methodology for cobalt removal from aqueous solutions using sparta pumice and zeolite 4A adsorbents. Nukleonika 53(Supplement 2):S121–S128

    CAS  Google Scholar 

  • Ciobanu G, Ilisei S, Harja M, Luca C (2013) Removal of reactive blue 204Dye from aqueous solutions by adsorption onto nanohydroxyapatite. Sci Adv Mater 5(8):1090–1096

    Article  CAS  Google Scholar 

  • Cojocaru C, Zakrzewska-Trznadel G (2007) Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration. J Membr Sci 298:56–70

    Article  CAS  Google Scholar 

  • Cojocaru C, Diaconu M, Cretescu I, Savić J, Vasić V (2009) Biosorption of copper (II) ions from aqua solutions using dried yeast biomass. Colloids Surf A 335(1–3):181–188

    Article  CAS  Google Scholar 

  • Cordero B, Lodeiro P, Herrero R, Sastre de Vicente ME (2004) Biosorption of cadmium by fucus spiralis. Environ Chem 1:180–187

    Article  CAS  Google Scholar 

  • Curteanu S, Buema G, Piuleac CG, Sutiman DM, Harja M (2013) Neuro-evolutionary optimization methodology applied to the synthesis process of ash based adsorbents. J Ind Eng Chem. http://dx.doi.org/10.1016/j.jiec.2013.05.020

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  Google Scholar 

  • Djeribi R, Hamadaoui O (2008) Sorption of copper (II) from aqueous solutions by cedar sawdust and crushed brick. Desalin 225:95–112

    Article  CAS  Google Scholar 

  • Gedik K, Imamoglu I (2008) Affinity of clinoptilolite-based zeolites towards removal of Cd from aqueous solutions. Sep Sci Technol 43(5):1191–1207

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash: a sugar industry waste. J Colloid Interface Sci 217:321–328

    Article  Google Scholar 

  • Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766–770

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008a) Biosorption of lead from aqueous solutions by green algae Spirogyra species: equilibrium and adsorption kinetics. J Hazard Mater 152:407–414

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008b) Equilibrium and kinetic modeling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous solution. J Hazard Mater 153:759–766

    Article  CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S (1998) Removal of lead from wastewater using bagasse fly ash: a sugar industry waste material. Sep Sci Technol 33:1331–1343

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007) Defluoridation of wastewaters using waste carbon slurry. Water Res 41(15):3307–3316

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Malviya A, Mittal J (2009a) Adsorption of carmoisine A from wastewater using waste. J Colloid Interface Sci 335(1):24–33

    Article  CAS  Google Scholar 

  • Gupta BS, Curran M, Hasan S, Ghosh TK (2009b) Adsorption characteristics of Cu and Ni on Irish peat moss. J Environ Manag 90(2):954–960

    Article  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342(1):135–141

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011a) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45(6):2207–2212

    Article  CAS  Google Scholar 

  • Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011b) A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. J Hazard Mater 186:891–901

    Article  CAS  Google Scholar 

  • Hamdaoui O (2009) Removal of copper (II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: modeling. J Hazard Mater 161(2–3):737–746

    Article  CAS  Google Scholar 

  • Harja M, Barbuta M, Rusu L, Munteanu C, Buema G, Doniga E (2011) Simultaneous removal of Astrazone blue and lead onto low cost sorbents based on power plant ash. Environ Eng Manag J 10(3):341–347

    CAS  Google Scholar 

  • Harja M, Buema G, Sutiman DM, Munteanu C, Bucur D (2012a) Low cost adsorbents obtained from ash for copper removal. Korean J Chem Eng 29(12):1735–1744

    Article  CAS  Google Scholar 

  • Harja M, Buema G, Sutiman DM, Cretescu I (2012b) Removal of heavy metal ions from aqueous solution using low cost sorbents obtained from ash. Chem Pap 67(5):497–508

    Google Scholar 

  • Harja M, Rusu L, Bucur D, Ciocinta RC (2012c) Fly ash-derived zeolites as adsorbents for Ni removal from wastewater. Rev Roum Chem 56(6):587–597

    Google Scholar 

  • He J, Hong S, Zhang L, Gan F, Ho YS (2010) Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environ Bull 19:2651–2656

    CAS  Google Scholar 

  • Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33

    Article  CAS  Google Scholar 

  • Islamoglu S, Yilmaz L, Ozbelge HO (2006) Development of a precipitation based separation scheme for selective removal and recovery of heavy metals from cadmium rich electroplating industry effluents. Sep Sci Technol 41(15):3367–3385

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Bhatnagar A, Suhas (2003) A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Sep Sci Technol 38:463–481

    Article  CAS  Google Scholar 

  • Kavakh PA, Yilmaz Z, Sen M (2007) Investigation of heavy metal ion adsorption characteristics of poly(N, N Dimethylamino Ethylmethacrylate) hydrogels. Sep Sci Technol 42:1245–1254

    Article  Google Scholar 

  • Khalid N, Rahman S, Ahmad S (2005) Potential of sawdust for the decontamination of lead from aqueous media. Sep Sci Technol 40(12):2427–2443

    Article  CAS  Google Scholar 

  • Kumar KV, Porkodi K, Rocha F (2008a) Comparision of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon. J Hazard Mater 150:158–165

    Article  CAS  Google Scholar 

  • Kumar KV, Porkodi K, Rocha F (2008b) Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions. J Hazard Mater 151:794–804

    Article  CAS  Google Scholar 

  • Larous S, Meniai AH, Bencheikh Lechocine M (2005) Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination 185:483–490

    Article  CAS  Google Scholar 

  • Lim L, Priyantha N, Tennakoon DTB, Dahri MK (2012) Biosorption of cadmium (II) and copper (II) ions from aqueous solution by core of Artocarpus odoratissimus. Environ Sci Pollut Res 19:3250–3256

    Article  CAS  Google Scholar 

  • Marchitan M, Cojocaru C, Mereuta A, Duca G, Cretescu I, Gonta M (2010) Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: a comparison between response surface methodology and artificial neural network. Sep Purif Technol 75:273–285

    Article  CAS  Google Scholar 

  • Memon SQ, Memon N, Shah SW, Khuhawar MY, Bhanger MI (2007) Sawdust: a green and economical sorbent for the removal of cadmium (II) ions. J Hazard Mater B139:116–121

    Article  Google Scholar 

  • Mishra A, Tripathi BD (2008) Utilization of fly ash in adsorption of heavy metals from wastewater. Toxicol Environ Chem 90(6):1091–1097

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2008) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Hazard Mater 151(2–3):821–832

    Article  CAS  Google Scholar 

  • Mittal A, Kaur D, Malviya A, Mittal J, Gupta VK (2009) Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. J Colloid Interface Sci 337(2):345–354

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Gupta VK (2010a) Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 344(2):497–507

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010b) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343(2):463–473

    Article  CAS  Google Scholar 

  • Mohammadi N, Khani H, Gupta VK, Amereh E, Agarwal S (2010) Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J Colloid Interface Sci 342(2):518–527

    Article  Google Scholar 

  • Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments. Wiley, New Jersey

    Google Scholar 

  • Nakbanpote W, Goodman BA, Thiravetyan P (2007) Copper adsorption on rice husk derived materials studied by EPR and FTIR. Colloids Surf A 304(1–3):7–13

    Article  CAS  Google Scholar 

  • Nethaji S, Sivasamy A, Mandal AB (2013) Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int J Environ Sci Technol 10:231–242

    Article  CAS  Google Scholar 

  • Ng JCY, Cheung WH, McKay G (2002) Equilibrium studies of the sorption of Cu(II) ions onto chitosan. J Colloid Interface Sci 255:64–74

    Article  CAS  Google Scholar 

  • Ngah WSW, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948

    Article  Google Scholar 

  • Pavasars I, Hagberg J, Boren H, Allard B (2003) Alkaline degradation of cellulose: mechanism and kinetics. J Polym Environ 11:39–47

    Article  CAS  Google Scholar 

  • Plazinski W (2012) Sorption of lead, copper, and cadmium by calcium alginate: metal binding stoichiometry and the pH effect. Environ Sci Pollut Res 19:3516–3524

    Article  CAS  Google Scholar 

  • Rajkumar K, Muthukumar M (2012) Optimization of electro-oxidation process for the treatment of Reactive Orange 107 using response surface methodology. Environ Sci Pollut Res 9:148–160

    Article  Google Scholar 

  • Redhe M, Giger M, Nilson L (2004) An investigation of structural optimization crashworthiness design using a stochastic approach. Struct Multidiscip Optim 27:446–459

    Google Scholar 

  • Reed BE, Nonavinakere SK (1992) Metal Adsorption by activated carbon: effect of complexing ligands, competing adsorbates, ionic strength, and background electrolyte. Sep Sci Technol 27(14):1985–2000

    Article  CAS  Google Scholar 

  • Sari A, Soylak M (2007) Equilibrium and thermodynamic studies of stearic acid adsorption on Celtek clay. J Serb Chem Soc 72:485–494

    Article  CAS  Google Scholar 

  • Sciban M, Klasnja M, Skrbic B (2006) Modified softwood sawdust as adsorbent of heavy metal ions from water. J Hazard Mater 136:266–271

    Article  CAS  Google Scholar 

  • Sciban M, Radetic B, Kevresan Z, Klasnja M (2007) Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour Technol 98(2):402–409

    Article  CAS  Google Scholar 

  • Sharaf G, Hassan H (2013) Removal of copper ions from aqueous solution using silica derived from rice straw: comparison with activated charcoal. Int J Environ Sci Technol. doi:10.1007/s13762-013-0343-8

    Google Scholar 

  • Soreanu G, Béland M, Falletta P, Ventresca B, Seto P (2009) Evaluation of different packing media for anoxic H2S control in biogas. Environ Technol 30(12):1249–1259

    Article  CAS  Google Scholar 

  • Srinivasan V, Subbaiyan M (1989) Electroflotation studies on Cu, Ni, Zn, and Cd with ammonium dodecyl dithiocarbamate. Sep Sci Technol 24(1):145–150

    Article  CAS  Google Scholar 

  • Taqvi SIH, Hasany SM, Bhanger MI, Shah SW (2006) Exploitation of beach sand as a low cost sorbent for the removal of Pb(II) ions from aqueous solutions. Sep Sci Technol 41(3):531–547

    Article  CAS  Google Scholar 

  • Xiarchos I, Jaworska A, Zakrzewska-Trznadel G (2008) Response surface methodology for the modelling of copper removal from aqueous solutions using micellar-enhanced ultrafiltration. J Membr Sci 321:222–231

    Article  CAS  Google Scholar 

  • Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL (2001) The removal of heavy metals from aqueous solutions by sawdust adsorption: removal of lead and comparison of its adsorption with copper. J Hazard Mater 84(1):83–94

    Article  CAS  Google Scholar 

  • Yuan C, Yan Y, Ren Z, Li T, Cao J (2004) Kinetics of sawdust hydrolysis with dilute hydrochloric acid and ferrous chloride. Chin J Process Eng 4:64–68

    CAS  Google Scholar 

  • Zainul AZ, Marlini S, Nurfadilah M, Wan Azlina A (2009) Chromium(VI) removal from aqueous solution by untreated rubber wood sawdust. Desalination 244:109–121

    Article  Google Scholar 

  • Zamani AA, Shokri R, Yafitian MR, Parizanganeh AH (2013) Adsorption of lead, zinc and cadmium ions from contaminated water onto Peganum harmala seeds as biosorbent. J Environ Sci Technol 10:93–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Municipal Thermal Plant of Iasi (CET II) for providing the fly ash used as raw material in this paper.

Nomenclature

calc:

Subscript indicating the calculated value

exp:

Subscript indicating the experimental value

T:

Superscript denoting the transpose matrix

*:

Superscript indicating optimal value

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Harja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cretescu, I., Soreanu, G. & Harja, M. A low-cost sorbent for removal of copper ions from wastewaters based on sawdust/fly ash mixture. Int. J. Environ. Sci. Technol. 12, 1799–1810 (2015). https://doi.org/10.1007/s13762-014-0596-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0596-x

Keywords

Navigation