Removal of heavy metals and arsenic from aqueous solution using textile wastes from denim industry

  • D. I. Mendoza-Castillo
  • C. K. Rojas-Mayorga
  • I. P. García-Martínez
  • M. A. Pérez-Cruz
  • V. Hernández-Montoya
  • A. Bonilla-PetricioletEmail author
  • M. A. Montes-Morán
Original Paper


In this study, the denim fiber scraps were reused as an alternative low-cost sorbent for the removal of heavy metals Pb2+, Cd2+, Zn2+ and arsenic from aqueous solutions. Results showed that this textile waste was an effective sorbent for the removal of these heavy metal ions and offered a better removal performance than those reported for other synthetic and natural sorbents such as activated carbons and zeolites. On the other hand, raw and metal-loaded denim wastes were also useful for the removal of arsenic (V) from aqueous solutions and their sorption capacities were higher than 1.5 mg/g. In particular, the presence of Pb2+ ions on the surface of denim wastes improved significantly its arsenic (V) sorption performance. In summary, the reuse of denim textile wastes in wastewater treatment can be considered as an eco-friendly application that could be useful for waste management and also for reducing the production costs in this important industrial sector.


Water pollutants Denim fiber scraps Sorption Waste management 



Authors acknowledge the financial support provided by CONACYT, DGEST, Gobierno del Estado de Aguascalientes and Municipio de Aguascalientes and Instituto Tecnológico de Aguascalientes.


  1. Ahmaruzzaman M (2011) Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface 166:36–59Google Scholar
  2. Asgari G, Roshani B, Ghanizadeh G (2012) The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. J Hazard Mater 217–218:123–132CrossRefGoogle Scholar
  3. Briga-Sá A, Nascimiento D, Teixeira N, Pinto J, Caldeira F, Varum H, Paiva A (2013) Textile waste as an alternative thermal insulation building material solution. Constr Build Mater 38:155–160CrossRefGoogle Scholar
  4. Celebi N, Nadaroglu H, Kalkan E (2012) Removal of As (III) from wastewater using Erzurum clay soil. Fresen Environ Bull 21:1982–1991Google Scholar
  5. Deliyanni E, Bandosz TJ (2011) Importance of carbon surface chemistry in development of iron-carbon composite adsorbents for arsenate removal. J Hazard Mater 186:667–674CrossRefGoogle Scholar
  6. Deng H, Li G, Yang H, Tang J, Tang J (2010) Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem Eng J 163:373–381CrossRefGoogle Scholar
  7. Dhaouadi H, M’Henni F (2008) Textile mill effluent decolorization using crude dehydrated sewage sludge. Chem Eng J 138:111–119CrossRefGoogle Scholar
  8. Dhir B, Srivastava S (2011) Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol Eng 37:893–896CrossRefGoogle Scholar
  9. Di Natale F, Erto A, Lancia A, Musmarra D (2008) Experimental and modelling analysis of As(V) ions adsorption on granular activated carbon. Water Res 42:2007–2016CrossRefGoogle Scholar
  10. Dubey A, Mishra A, Singhal S (2013) Application of dried plant biomass as novel low-cost adsorbent for removal of cadmium from aqueous solution. Int J Environ Sci Technol. doi: 10.1007/s13762-013-0278-0
  11. Ersoy B, Sariisik A, Dikmen S, Sariisik G (2010) Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technol 197:129–135CrossRefGoogle Scholar
  12. Faria PCC, Orfao JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbon with different surface chemistries. Water Res 38:2043–2052CrossRefGoogle Scholar
  13. Guijarro-Aldaco A, Hernández-Montoya V, Bonilla-Petriciolet A, Montes-Morán MA, Mendoza-Castillo DI (2011) Improving the adsorption of heavy metals from water using commercial carbons modified with egg shell wastes. Ind Eng Chem Res 50:9354–9362CrossRefGoogle Scholar
  14. Gupta VK, Ganjali MR, Nayak A, Bhushan B, Agarwal S (2012) Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chem Eng J 197:330–342CrossRefGoogle Scholar
  15. Halimi MT, Hassen MB, Sakli F (2008) Cotton waste recycling: quantitative and qualitative assessment. Resour Conserv Recycl 52:785–791CrossRefGoogle Scholar
  16. Huang M, Chen L, Chen D, Zhou S (2011) Characteristics and aluminum reuse of textile sludge incineration residues after acidification. J Environ Sci 23:1999–2004CrossRefGoogle Scholar
  17. Irani M, Amjadi M, Mousaviana MA (2011) Comparative study of lead sorption onto natural perlite, dolomite and diatomite. Chem Eng J 178:317–323CrossRefGoogle Scholar
  18. Kalkan E, Nadaroglu H, Demir N (2012) Experimental study on the nickel (II) removal from aqueous solutions using silica fume with/without apocarbonic anhydrase. Desalin Water Treat 44:180–189CrossRefGoogle Scholar
  19. Kalkan E, Nadaroglu H, Dikbas N, Tasgin E, Celebi N (2013) Bacteria-modified red mud for adsorption of cadmium ions from aqueous solutions. Pol J Environ Stud 22:105–117Google Scholar
  20. Kamsonlian S, Suresh S, Ramanaiah V, Majumder CB, Chand S, Kumar A (2012) Biosorptive behavior of mango leaf powder and rice husk for arsenic (III) from aqueous solutions. Int J Environ Sci Technol 9:565–578CrossRefGoogle Scholar
  21. Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E, Tack FMG, De Pauwc N, Verloo MG (2007) Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng 30:320–325CrossRefGoogle Scholar
  22. Li CW, JrL Lin, Kang SF, Liang CL (2005) Acidification and alkalization of textile chemical sludge: volume/solid reduction, dewaterability, and Al(III) recovery. Sep Purif Technol 42:31–37CrossRefGoogle Scholar
  23. Mo H, Wen Z, Chen J (2009) China’s recyclable resources recycling system and policy: a case study in Suzhou. Resour Conserv Recycl 53:409–419CrossRefGoogle Scholar
  24. Nadaroglu H, Kalkan E (2012) Removal of cobalt (II) ions from aqueous solution by using alternative adsorbent industrial red mud waste material. Int J Phys Sci 7:1386–1394Google Scholar
  25. Nadaroglu H, Kalkan E, Demir N (2010) Removal of copper from aqueous solution using red mud. Desalination 251:90–95CrossRefGoogle Scholar
  26. Nadaroğlu H, Çelebi N, Kalkan E, Dikbaş N (2013) The evaluation of affection of Methylobacterium extorquens-modified silica fume for adsorption cadmium (II) ions from aqueous solutions affection. Kafkas Univ Vet Fak Derg 19:91–397Google Scholar
  27. Nahil MA, Williams PT (2010) Activated carbons from acrylic textile waste. J Anal Appl Pyrol 89:51–59CrossRefGoogle Scholar
  28. Nahil MA, Williams PT (2012) Surface chemistry and porosity of nitrogen-containing activated carbons produced from acrylic textile waste. Chem Eng J 184:228–237CrossRefGoogle Scholar
  29. Oke IA, Olarinoye NO, Adewusi SRA (2008) Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell. Adsorption 14:73–83CrossRefGoogle Scholar
  30. Ozturk E, Yetis U, Dilek FB, Demirer GN (2009) A chemical substitution study for a wet processing textile mill in Turkey. J Clean Prod 17:239–247CrossRefGoogle Scholar
  31. Rangel-Porras G, García-Magno JB, González-Muñoz MP (2010) Lead and cadmium immobilization on calcitic limestone materials. Desalination 262:1–10CrossRefGoogle Scholar
  32. Ryu C, Phan AN, Sharifi VN, Swithenbank J (2007) Combustion of textile residues in a packed bed. Exp Therm Fluid Sci 31:887–895CrossRefGoogle Scholar
  33. Saka C, Şahin O, Küçük MM (2012) Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. Int J Environ Sci Technol 9:379–394CrossRefGoogle Scholar
  34. Saqib ANS, Waseem A, Khan AF, Mahmood Q, Khan A, Habib A, Khan AR (2013) Arsenic bioremediation by low cost materials derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia). Ecol Eng 51:88–94CrossRefGoogle Scholar
  35. Šćiban MB, Klašnja MT, Antov MG (2011) Study of the biosorption of different heavy metal ions onto Kraft lignin. Ecol Eng 37:2092–2095CrossRefGoogle Scholar
  36. Streat M, Hellgardt K, Newton NLR (2008) Hydrous ferric oxide as an adsorbent in water treatment: part 3: bath and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions. Process Saf Environ 86:21–30CrossRefGoogle Scholar
  37. Tan G, Yuan H, Liu Y, Xiao D (2010) Removal of lead from aqueous solution with native and chemically modified corncobs. J Hazard Mater 174:740–745CrossRefGoogle Scholar
  38. Tian Y, Wu M, Liu R, Wang D, Lin X, Liu W, Ma L, Li Y, Huang Y (2011) Modified native cellulose fibers—a novel efficient adsorbent for both fluoride and arsenic. J Hazard Mater 185:93–100CrossRefGoogle Scholar
  39. Tuna A, Ozdemir E, Simsek E, Beker U (2013) Optimization of process parameters for removal of arsenic using activated carbon-based iron-containing adsorbents by response surface methodology. Water Air Soil Poll 224:1–15Google Scholar
  40. Treviño-Cordero H, Juárez-Aguilar LG, Mendoza-Castillo DI, Hernández-Montoya V, Bonilla-Petriciolet A, Montes-Morán MA (2013) Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Ind Crop Prod 42:315–323CrossRefGoogle Scholar
  41. Vitela-Rodriguez AV, Rangel-Mendez JR (2013) Arsenic removal by modified activated carbons with iron hydro (oxide) nanoparticles. J Environ Manag 114:225–231CrossRefGoogle Scholar
  42. Wang X, Zeng G, Zhu J (2008) Treatment of jean-wash wastewater by combined coagulation, hydrolysis/acidification and fenton oxidation. J Hazard Mater 153:810–816CrossRefGoogle Scholar
  43. Wasewar KL, Atif M, Prasad B, Mishra IM (2009) Batch adsorption of zinc on tea factory waste. Desalination 244:66–71CrossRefGoogle Scholar
  44. Williams PT, Reed AR (2003) Pre-formed activated carbon matting derived from the pyrolysis of biomass natural fiber textile waste. J Anal Appl Pyrol 70:563–577CrossRefGoogle Scholar
  45. Williams PT, Reed AR (2004) High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fiber textile waste. J Anal Appl Pyrol 71:971–986CrossRefGoogle Scholar
  46. Zuo XJ, Balasubramanian R, Fu DF, Li H (2012) Biosorption of copper, zinc and cadmium using sodium hydroxide immersed Cymbopogon schoenanthus L. Spreng (lemon grass). Ecol Eng 49:186–189CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2014

Authors and Affiliations

  • D. I. Mendoza-Castillo
    • 1
  • C. K. Rojas-Mayorga
    • 1
  • I. P. García-Martínez
    • 2
  • M. A. Pérez-Cruz
    • 3
  • V. Hernández-Montoya
    • 1
  • A. Bonilla-Petriciolet
    • 1
    Email author
  • M. A. Montes-Morán
    • 4
  1. 1.Instituto Tecnológico de AguascalientesAguascalientesMexico
  2. 2.Universidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  3. 3.Benemérita Universidad Autónoma de PueblaPueblaMexico
  4. 4.Instituto Nacional del CarbónOviedoSpain

Personalised recommendations