Clogging reduction and removal of hormone residues with laboratory-scale vertical flow organic-based filter and hybrid wetland

  • J. A. Herrera-Melián
  • M. E. Torres-Padrón
  • A. Betancor-Abreu
  • Z. Sosa-Ferrera
  • J. J. Santana-Rodríguez
  • M. A. Martín-González
  • J. Araña
  • R. Guedes-Alonso
Original Paper

Abstract

A laboratory-scale, intermittently fed, organic-based vertical flow filter was tested as a pre-treatment of high-strength urban wastewater to reduce the risk of clogging in treatment wetlands. At an average hydraulic loading rate of 815 L/m2 day and average surface loading rates of biological oxygen demand of 458 g/m2 day, chemical oxygen demand of 594 g/m2 day and suspended solids of 310 g/m2 day, the organic-based vertical flow filter achieved removal efficiencies of 48 % of biological oxygen demand, 45 % of chemical oxygen demand, 69 % of suspended solids and 51 % of turbidity. For this unit, removals were significantly correlated with organic surface loading rates but not with hydraulic loading rate. Additionally, the organic-based vertical flow filter removed almost completely the hormone residues studied: estrone, 17β-estradiol, 17β-ethynyl estradiol, diethylstilbestrol, estriol, norethisterone and testosterone, most probably by the combination of adsorption onto the organic substrate and biodegradation. The efficiency of the combined system was remarkable for biological oxygen demand (97 %), chemical oxygen demand (89 %), suspended solids and turbidity (99 %), fecal coliforms and E. coli (99.9 %) and fecal enterococci (99 %).

Keywords

Hybrid treatment wetland Clogging Organic substrate Hormones 

References

  1. Al-Jamal W, Mahmoud N (2009) Community onsite treatment of cold strong sewage in a UASB-septic tank. doi:10.1016/j.biortech.2008.07.050
  2. APHA (1998) Standard methods for the examination of water and waste water. WashingtonGoogle Scholar
  3. Aufartová J, Mahugo-Santana C, Sosa-Ferrera Z, Santana-Rodríguez JJ, Nováková L, Solich P (2011) Determination of steroid hormones in biological and environmental samples using green microextraction techniques: an overview. Anal Chim Acta 704:33–46. doi:10.1016/j.aca.2011.07.030 CrossRefGoogle Scholar
  4. Ausland G, Stevik TK, Hanssen JF, Kohler JC, Jenssen PD (2002) Intermittent filtration of wastewater—removal of fecal coliforms and fecal streptococci. Water Res 36:3507–3516CrossRefGoogle Scholar
  5. Barros P, Ruiz I, Soto M (2008) Performance of an anaerobic digester-constructed wetland system for a small community. Ecol Eng 33:142–149. doi:10.1016/j.ecoleng.2008.02.015 CrossRefGoogle Scholar
  6. Boutilier L, Jamieson R, Gordon R, Lake C, Hart W (2009) Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands. Water Res 43:4370–4380. doi:10.1016/j.watres.2009.06.039 CrossRefGoogle Scholar
  7. Cai K, Elliott CT, Phillips DH, Scippo M, Muller M, Connolly L (2012) Treatment of estrogens and androgens in dairy wastewater by a constructed wetland system. Water Res 46:2333–2343. doi:10.1016/j.watres.2012.01.056 CrossRefGoogle Scholar
  8. Caselles-Osorio A, García J (2006) Performance of experimental horizontal subsurface flow constructed wetland fed with dissolved or particulate organic matter. Water Res 40:3603–3611. doi:10.1016/j.watres.2006.05.038 CrossRefGoogle Scholar
  9. Caselles-Osorio A, Puigagut J, Segú E, Vaello N, Granés F, García D, García J (2007) Solids accumulation in six full-scale subsurface flow constructed wetlands. Water Res 41:1388–1398. doi:10.1016/j.watres.2006.12.019 CrossRefGoogle Scholar
  10. Cooper P (2005) The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Sci Technol 51:91–97Google Scholar
  11. Council of the European Union (1991) Council directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment. Off J Eur Union L 135:40–52Google Scholar
  12. de la Varga D, Díaz MA, Ruiz I, Soto M (2013) Avoiding clogging in constructed wetlands by using anaerobic digesters as pre-treatment. Ecol Eng 52:262–269. doi:10.1016/j.ecoleng.2012.11.005 CrossRefGoogle Scholar
  13. Froehner S, Piccioni W, Scurupa K, Aisse M (2011) Removal capacity of caffeine, hormones and bisphenol by aerobic and anaerobic sewage treatment. doi: 10.1007/s11270-010-0545-3
  14. Hamid H, Eskicioglu C (2012) Fate of estrogenic hormones in wastewater and sludge treatment: a review of properties and analytical detection techniques in sludge matrix. Water Res 46:5813–5833. doi:10.1016/j.watres.2012.08.002 CrossRefGoogle Scholar
  15. Herrera-Melián JA, Martín-Rodríguez AJ, Araña J, González-Díaz O, González-Henríquez JJ (2010) Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecol Eng 36:891–899. doi:10.1016/j.ecoleng.2010.03.009 CrossRefGoogle Scholar
  16. Kadlec R, Wallace S (2009) Treatment Wetlands. CRC Press Inc, Boca RatonGoogle Scholar
  17. Khanal SK, Xie B, Thompson ML, Sung S, Ong SK, van Leeuwen J (2006) Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol 40:6537–6546. doi:10.1021/es0607739 CrossRefGoogle Scholar
  18. Knowles P, Dotro G, Nivala J, García J (2011) Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecol Eng 37:99–112. doi:10.1016/j.ecoleng.2010.08.005 CrossRefGoogle Scholar
  19. Koiv M, Vohla C, Motlep R, Liira M, Kirsimäe K, Mander Ü (2009) The performance of peat-filled subsurface flow filters treating landfill leachate and municipal wastewater. Ecol Eng 35:204–212. doi:10.1016/j.ecoleng.2008.04.006 CrossRefGoogle Scholar
  20. Korkusuz EA, Beklioglu M, Demirer GN (2005) Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecol Eng 24:187–200. doi:10.1016/j.ecoleng.2004.10.002 CrossRefGoogle Scholar
  21. Lai KM, Johnson KL, Scrimshaw MD, Lester JN (2000) Binding of waterborne steroid estrogens to solid phases in river and estuarine system. Environ Sci Technol 34:3890–3894. doi:10.1021/es9912729 CrossRefGoogle Scholar
  22. Maltais-Landry G, Maranger R, Brisson J, Chazarenc F (2009) Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands. Environ Pollut 157:748–754. doi:10.1016/j.envpol.2008.11.019 CrossRefGoogle Scholar
  23. Masi F, Martinuzzi N (2007) Constructed wetlands for the Mediterranean countries: hybrid systems for water reuse and sustainable sanitation. Desalination 215:44–55. doi:10.1016/j.desal.2006.11.014 CrossRefGoogle Scholar
  24. Metcalf L, Eddy HP (2004) Wastewater engineering: treatment and reuse. McGraw-Hill, New YorkGoogle Scholar
  25. Molinos-Senante M, Garrido-Baserba M, Reif R, Hernández-Sancho F, Poch M (2012) Assessment of wastewater treatment plant design for small communities: environmental and economic aspects. Sci Total Environ 427:11–18. doi:10.1016/j.scitotenv.2012.04.023 CrossRefGoogle Scholar
  26. Molle P, Prost-Boucle S, Lienard A (2008) Potential for total nitrogen removal by combining vertical flow and horizontal flow constructed wetlands: a full-scale experiment study. Ecol Eng 34:23–29. doi:10.1016/j.ecoleng.2008.05.016 CrossRefGoogle Scholar
  27. Molleda P, Blanco I, Ansola G, de Luis E (2008) Removal of wastewater pathogen indicators in a constructed wetland in Leon Spain. Ecol Eng 33:252–257. doi:10.1016/j.ecoleng.2008.05.001 CrossRefGoogle Scholar
  28. Namasivayam C, Prahba D, Kumutha M (1998) Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresour Technol 64:77–79CrossRefGoogle Scholar
  29. Nehdi I, Omri S, Khalil MI, Al-Resayes SI (2010) Characteristics and chemical composition of date palm (Phoenix canariensis) seeds and seed oil. Ind Crops Prod 32:360–365. doi:10.1016/j.indcrop.2010.05.016 CrossRefGoogle Scholar
  30. Panswad T, Komolmethee L (1997) Effects of hydraulic shock loads on small on-site sewage treatment unit. Water Sci Technol 35:145–152CrossRefGoogle Scholar
  31. Pedescoll A, Corzo A, Álvarez E, Puigagut J, García J (2011) Contaminant removal efficiency depending on primary treatment and operational strategy in horizontal subsurface flow treatment wetlands. Ecol Eng 37:372–380. doi:10.1016/j.ecoleng.2010.12.011 CrossRefGoogle Scholar
  32. RD 1620. Spanish Royal Decree 1620/2007. Real Decreto de 7 de diciembre, por el que se establece el régimen jurídico de la reutilización de las aguas depuradas. BOE 294:50639–50661Google Scholar
  33. Sabry T (2010) Evaluation of decentralized treatment of sewage employing up flow septic tank/baffled reactor (USBR) in developing countries. J Hazard Mater 174:500–505. doi:10.1016/j.jhazmat.2009.09.080 CrossRefGoogle Scholar
  34. Salas JJ, Sardón N, Martel G, Vera L (2006) Gestión sostenible del agua residual en entornos rurales. Instituto Tecnológico de Canarias (ITC) Gran CanariaGoogle Scholar
  35. Serrano L, de la Varga D, Ruiz I, Soto M (2011) Winery wastewater treatment in a hybrid constructed wetland. Ecol Eng 37:744–753. doi:10.1016/j.ecoleng.2010.06.038 CrossRefGoogle Scholar
  36. Shappell NW, Billey LO, Forbes D, Poach ME, Matheny TA, Reddy GB, Hunt PG (2007) Estrogenic activity and steroid hormones in swine wastewater processed through a lagoon constructed-wetland system. Environ Sci Technol 41:444–450. doi:10.1021/es061268e CrossRefGoogle Scholar
  37. Song H, Nakano K, Taniguchi T, Nombra M, Nishimura O (2009) Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. Bioresour Technol 100:2945–2951. doi:10.1016/j.biortech.2009.01.045 CrossRefGoogle Scholar
  38. RD 509. Spanish Royal Decree 509/1996. Real Decreto de 15 de marzo, de desarrollo del Real Decreto-ley 11/1995, de 28 de diciembre, por el que se establecen las normas aplicables al tratamiento de las aguas residuales urbanas. BOE 77:12038–12041Google Scholar
  39. Tee HC, Seng CE, Noor AM, Lim PE (2009) Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal. Sci Total Environ 407:3563–3571. doi:10.1016/j.scitotenv.2009.02.017 CrossRefGoogle Scholar
  40. Turon C, Comas J, Poch M (2009) Constructed wetland clogging: a proposal for the integration and reuse of existing knowledge. Ecol Eng 35:1710–1718. doi:10.1016/j.ecoleng.2009.06.012 CrossRefGoogle Scholar
  41. Vega-Morales T, Sosa-Ferrera Z, Santana-Rodríguez JJ (2010) Determination of alkyphenol polyethoxylates, bisphenol-A, 17α-ethynylestradiol and 17β-estradiol and its metabolites in sewage samples by SPE and LC/MS/MS. J Hazard Mater 183:701–711. doi:10.1016/j.jhazmat.2010.07.083 CrossRefGoogle Scholar
  42. Vymazal J (2009) Review: the use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35:1–17. doi:10.1016/j.ecoleng.2008.08.016 CrossRefGoogle Scholar
  43. Winter KJ, Goetz D (2003) The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands. Water Sci Technol 48:9–14Google Scholar
  44. Ye J, Wang L, Li D, Han W, Ye C (2012) Vertical oxygen distribution trend and oxygen source analysis for vertical-flow constructed wetlands treating domestic wastewater. Ecol Eng 41:8–12. doi:10.1016/j.ecoleng.2011.12.015 CrossRefGoogle Scholar
  45. Ying G, Kookana RS, Dillon P (2003) Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Res 37:3785–3791. doi:10.1016/S0043-1354(03)00261-6 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2014

Authors and Affiliations

  • J. A. Herrera-Melián
    • 1
  • M. E. Torres-Padrón
    • 1
  • A. Betancor-Abreu
    • 1
  • Z. Sosa-Ferrera
    • 1
  • J. J. Santana-Rodríguez
    • 1
  • M. A. Martín-González
    • 1
  • J. Araña
    • 1
  • R. Guedes-Alonso
    • 1
  1. 1.Dpto de QuímicaUniversidad de Las Palmas de Gran CanariaLas PalmasSpain

Personalised recommendations