Mercury pollution assessment in soils affected by industrial emissions using miniaturized ultrasonic probe extraction and ICP-MS

  • E. Bernalte
  • S. Salmanighabeshi
  • F. Rueda-Holgado
  • M. R. Palomo-Marín
  • C. Marín-Sánchez
  • F. Cereceda-Balic
  • E. Pinilla-Gil
Original Paper


A combination of probe ultrasonic extraction, optimized by surface response methodology, and Inductively coupled plasma mass spectrometry (ICP-MS) detection is described in this work as an effective methodology for mercury monitoring in soils affected by industrial emissions. Minute amounts of samples (typically 20 mg) can be extracted in 3 min by 1 mL of HCl-based extracting solution, without risk of mercury losses, and sub sequentially assayed by ICP-MS. The method was successfully tested on soil standard reference materials and then applied to mercury monitoring in a large set of real soil samples collected during a long-term monitoring survey (2007–2011) around the industrial area of Puchuncaví, Chile. The method proved to be useful for investigation of spatial and temporal mercury variability in the area, showing an intermediate to high mercury contamination with potential impact on the surrounding ecosystem.


Mercury Soil Ultrasonic extraction Inductively coupled plasma mass spectrometry Hierarchical cluster analysis Contamination indexes 



This work is supported by the Spanish Agency of International Cooperation for Development (AECID project A1/037813/11) and the Spanish Ministry of Science and Innovation (project CTQ2011-25388). We acknowledge a grant from Junta de Extremadura, Spain (PRE09107). The authors thank N. Ríos for her technical assistance with soil samples processing.


  1. Aelion CM, Davis HT, McDermott S, Lawson AB (2008) Metal concentrations in rural topsoil in South Carolina: potential for human health impact. Sci Total Environ 402:149–156CrossRefGoogle Scholar
  2. Bernalte E, Marín Sánchez C, Pinilla Gil E (2011) Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal Chim Acta 689:60–64CrossRefGoogle Scholar
  3. Bernalte E, Marín Sánchez C, Pinilla Gil E (2012a) Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples. Sens Actuators B Chem 161:669–674CrossRefGoogle Scholar
  4. Bernalte E, Marín Sánchez C, Pinilla Gil E (2012b) Determination of mercury in indoor dust samples by ultrasonic probe microextraction and stripping voltammetry on gold nanoparticles-modified screen-printed electrodes. Talanta 87:187–192CrossRefGoogle Scholar
  5. Bernaus A, Gaona X, van Ree D, Valiente M (2006) Determination of mercury in polluted soils surrounding a chlor-alkali plant: direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta 565:73–80CrossRefGoogle Scholar
  6. Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Guzmán Bernardo FJ, Jiménez Moreno M (2005) Determination of mercury species in fish reference materials by gas chromatography-atomic fluorescence detection after closed-vessel microwave-assisted extraction. J Chromatogr A 1093:21–28CrossRefGoogle Scholar
  7. Canadian Council of Ministers of the Environment (2007) Canadian soil quality guidelines for the protection of environmental and human health, Update 7.0Google Scholar
  8. Collasiol A, Pozebon D, Maia SM (2004) Ultrasound assisted mercury extraction from soil and sediment. Anal Chim Acta 518:157–164CrossRefGoogle Scholar
  9. De Gregori I, Lobos MG, Pinochet H (2002) Selenium and its redox speciation in rainwater from sites of Valparaíso region in Chile, impacted by mining activities of copper ores. Water Res 36:115–122CrossRefGoogle Scholar
  10. De Gregori I, Fuentes E, Rojas M, Pinochet H, Potin-Gautier M (2003) Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J Environ Monit 5:287–295CrossRefGoogle Scholar
  11. dos Santos EJ, Herrmann AB, Vieira F, Sato CS, Corrêa QB, Maranhão TA, Tormen L, Curtius AJ (2010) Determination of Hg and Pb in compact fluorescent lamp by slurry sampling inductively coupled plasma optical emission spectrometry. Microchem J 96:27–31CrossRefGoogle Scholar
  12. Ferrara R, Mazzolai B, Lanzillotta E, Nucaro E, Pirrone N (2000) Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. Sci Total Environ 259:115–121CrossRefGoogle Scholar
  13. Friedli HR, Radke LF, Lu JY, Banic CM, Leaitch WR, Macpherson JI (2003) Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmos Environ 37:253–267CrossRefGoogle Scholar
  14. Gao Y, Shi Z, Long Z, Wu P, Zheng C, Hou X (2012) Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem J 103:1–14CrossRefGoogle Scholar
  15. García-Sánchez A, Murciego A, Álvarez-Ayuso E, Santa Regina I, Rodríguez-González MA (2009) Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). J Hazard Mater 168:1319–1324CrossRefGoogle Scholar
  16. Geng W, Nakayima T, Takanashi H (2008) Determination of mercury in ash and soil samples by oxygen flask combustion method–cold vapor atomic fluorescence spectrometry (CVAFS). J Hazard Mater 154:325–330CrossRefGoogle Scholar
  17. Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncavί Valley, Chile. Chemosphere 41:15–23CrossRefGoogle Scholar
  18. Ginocchio R, Carvallo G, Toro I, Bustamante E, Silva Y, Sepúlveda N (2004) Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environ Pollut 127:343–352CrossRefGoogle Scholar
  19. Grangeon S, Guédron S, Asta J, Sarret G, Charlet L (2012) Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol Indic 13:178–183CrossRefGoogle Scholar
  20. Guzmán-Mar JL, Hinojosa-Reyes L, Serra AM, Hernández-Ramírez A, Cerdà V (2011) Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis. Anal Chim Acta 708:11–18CrossRefGoogle Scholar
  21. Krata A, Bulska E (2005) Critical evaluation of analytical performance of atomic absorption spectrometry and inductively coupled plasma mass spectrometry for mercury determination. Spectrochim Acta B 60:345–350CrossRefGoogle Scholar
  22. Leefomgeving R (2009) Soil remediation circular. Environmental Data Management Software (Australia) Google Scholar
  23. Lemes M, Wang F (2009) Methylmercury speciation in fish muscle by HPLC-ICP-MS following enzymatic hydrolysis. J Anal At Spectrom 24:663–668CrossRefGoogle Scholar
  24. Li J, Lu Y, Yin W, Gan H, Zhang C, Deng X, Lian J (2009) Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China. Environ Monit Assess 153:365–375CrossRefGoogle Scholar
  25. Li X, Liu L, Wang Y, Luo G, Chen X, Yang X, Hall MHP, Guo R, Wang H, Cui J, He X (2013) Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma 192:50–58CrossRefGoogle Scholar
  26. López I, Cuello S, Cámara C, Madrid Y (2010) Approach for rapid extraction and speciation of mercury using a microtip ultrasonic probe followed by LC–ICP-MS. Talanta 82:594–599CrossRefGoogle Scholar
  27. Loppi S (2001) Environmental distribution of mercury and other trace elements in the geothermal area of Bagnore (Mt. Amiata, Italy). Chemosphere 45:991–995CrossRefGoogle Scholar
  28. Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165CrossRefGoogle Scholar
  29. Luo W, Lu Y, Wang B, Tong X, Wang G, Shi Y, Wang T, Giesy JP (2009) Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. Environ Monit Assess 158:507–517CrossRefGoogle Scholar
  30. Meza-Montenegro MM, Gandolfi AJ, Santana-Alcántar ME, Klmecki WT, Gómez A, Mendivil-Quijada H, Valencia M, Meza-Figueroa D (2012) Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. Sci Total Environ 433:472–481CrossRefGoogle Scholar
  31. Neaman A, Reyes L, Trolard F, Bourrié G, Sauvé S (2009) Copper mobility in contaminated soils of the Puchuncaví valley, central Chile. Geoderma 150:359–366CrossRefGoogle Scholar
  32. Neaman A, Huerta S, Sauvé S (2012) Effects of lime and compost on earthworm (Eisenia fetida) reproduction in copper and arsenic contaminated soils from the Puchuncavi Valley, Chile. Ecotoxicol Environ Saf 80:386–392CrossRefGoogle Scholar
  33. Osawa T, Hatsukawa Y, Appel PWU, Matsue H (2011) Mercury and gold concentrations of highly polluted environmental samples determined using prompt gamma-ray analysis and instrument neutron activation analysis. Nucl Instrum Methods B 268:717–720CrossRefGoogle Scholar
  34. Palomo Marín MR, Pinilla Gil E, Calvo Blázquez L, Capelo-Martínez JL (2011) Determination of trace and major elemental profiles in street dust samples by fast miniaturized ultrasonic probe extraction and ICP-MS. Talanta 84:840–845CrossRefGoogle Scholar
  35. Pereira E, Rodrigues SM, Otero M, Válega M, Lopes CB, Pato P, Coelho JP, Lillebo IL, Pardal MA, Rocha R, Duarte AC (2008) Evaluation of an interlaboratory proficiency-testing exercise for total mercury in environmental samples of soils, sediments and fish tissue. TrAC 27:959–970Google Scholar
  36. Reis AT, Rodrigues SM, Araújo C, Coehlo JP, Pereira E, Duarte AC (2009) Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Sci Total Environ 407:2689–2700CrossRefGoogle Scholar
  37. Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81:1369–1377CrossRefGoogle Scholar
  38. Salminen R, Batista MJ, Bidovec M et al (2005) Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Geological Survey of Finland, EspooGoogle Scholar
  39. Senesil GS, Baldassarre G, Senesi N, Radina R (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377CrossRefGoogle Scholar
  40. Shoaee H, Roshdi M, Khanlarzadeh N, Beiraghi A (2012) Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry. Spectrochim Acta A 98:70–75CrossRefGoogle Scholar
  41. Southworth GR, Lindberg SE, Zhang H, Anscombre FR (2004) Fugitive mercury emissions from a chlor-alkali factory: sources and fluxes to the atmosphere. Atmos Environ 38:597–611CrossRefGoogle Scholar
  42. Tack FMG, Vanhaesebroeck T, Verloo MG, Rompaey KV, Ranst EV (2005) Mercury baseline levels in Flemish soils (Belgium). Environ Pollut 134:173–179CrossRefGoogle Scholar
  43. Tadeo JL, Sánchez-Brunete C, Albero B, García-Valcárcel AI (2010) Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. J Chromatogr A 1217:2415–2440CrossRefGoogle Scholar
  44. Terán-Mita TA, Faz A, Salvador F, Arocena JM, Acosta JA (2013) High altitude artisanal small-scale gold mines are hot spots for mercury in soils and plants. Environ Pollut 173:103–109CrossRefGoogle Scholar
  45. US EPA (2012) Regional screening level (RSL) for chemical contaminants, summary tableGoogle Scholar
  46. US EPA (1993) Reference dose (RfD): description and use in health risk assessments, background document 1A, integrated risk information system (IRIS). United States Environmental Protection Agency, Washington, DCGoogle Scholar
  47. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232CrossRefGoogle Scholar
  48. Wu Y, Wang S, Streets D, Hao J, Chan M, Jiang J (2006) Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ Sci Technol 40:5312–5318CrossRefGoogle Scholar
  49. Yang P, Mao R, Shao H, Gao Y (2009) An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China. J Hazard Mater 167:1246–1251CrossRefGoogle Scholar
  50. Yaylali-Abanuz G (2011) Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchem J 99:82–92CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2013

Authors and Affiliations

  • E. Bernalte
    • 1
  • S. Salmanighabeshi
    • 1
  • F. Rueda-Holgado
    • 1
  • M. R. Palomo-Marín
    • 1
  • C. Marín-Sánchez
    • 1
  • F. Cereceda-Balic
    • 2
  • E. Pinilla-Gil
    • 1
  1. 1.Departamento de Química AnalíticaUniversidad de ExtremaduraBadajozSpain
  2. 2.Laboratorio de Química Ambiental (LQA), Centro de Tecnologías Ambientales (CETAM)Universidad Técnica Federico Santa MaríaValparaisoChile

Personalised recommendations