Advertisement

Dispersion model and bioaccumulation factor validating trace metals in sea bream inhabiting wastewater drain outfalls

  • A. H. Bu-Olayan
  • B. V. ThomasEmail author
Original Paper

Abstract

Our study was based on the recent increase in wastewater pollution and its deleterious effects to the marine ecosystem. Using numerical simulation (DESCAR-3.2 software program), we investigated the orientation and quantification of trace metals in wastewater discharges from permanent and semi-permanent drain outfalls constructed along the Kuwait Coastline encompassing six Kuwait Governorates (GI-GVI). This study was related to trace metals toxicity and bioaccumulation effects on the commercial yellow fin Sea bream, Acanthopagrus latus fish using probit program and bioaccumulation factor (BAF), respectively. Observations from wastewater discharges showed high trace metals concentrations in the sequence of Zn > Cr > Cu > Fe > Ni > Pb > Hg during winter compared to summer and in GI and GIV compared to drain outfalls in the other Governorates. Seasonally, trace metals in A. latus revealed the sequence of Zn > Fe > Cu > Ni > Cr > Pb > Hg in GI, GII and GIV indicating the significance of toxic metals that bioaccumulated from their surrounding untreated wastewater. Toxicity test revealed A. latus highly sensitive to Hg even at low lethal concentrations (LC15) compared to other metals. BAF in A. latus body parts was >1 indicating significant accumulation of trace metals from wastewater. However, BAF was <1 in Cr suggesting that A. latus could absorb trace metals from multiple sources over lengthy exposure period and not necessarily from wastewater containing rich Cr levels. Thus, the present findings validate A. latus as bioindicator to pollution more authentically by numerical simulation, toxicity and bioaccumulation tests compared to the traditional method of labeling A. latus as a pollution indicator.

Keywords

A. latus Bioaccumulation Toxicity Trace metals Wastewater 

Notes

Acknowledgments

We thank the Research Administration, Kuwait University for their invaluable financial support to our project (Grant No. SC-06/09). We also thank the Vice Dean Research and General Research Facilities (GRF: GS01/05) for extending their analytical support toward this project.

References

  1. Abel PD, Axiak V (1991) Ecotoxicology and the marine environment. Ellis Horwood Publisher, England, pp 39–43Google Scholar
  2. APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater. 20th edition, Water Environmental Federation Joint Publishers, 1015 fifteenth street, NW, Washington, DC, pp 2005–2605Google Scholar
  3. Asante KA, Agusa T, Kubota R, Mochizuki H, Ramu K, Nishida S, Ohta S, Yeh H, Subramanian A, Tanabe S (2010) Trace elements and stable isotope ratios (delta C-13 and delta N-15) in fish from deep-waters of the Sulu Sea and the Celebes-Sea. Mar Pollut Bull 60(9):1560–1570. doi: 10.1016/jmarpolbul.201004.011 CrossRefGoogle Scholar
  4. Bu-Olayan AH, Thomas BV (2005) Toxicity and bioaccumulation of heavy metals in mullet fish, Liza klunzingeri (Mugilidae: Perciformes). Chem Ecol 21(3):191–197. doi: 10.1080/02757540500117342 CrossRefGoogle Scholar
  5. Dang Fei, Wen-Xiong W, Rainbow PS (2012) Unifying prolonged copper exposure, accumulation, and toxicity from food and water in a marine fish. Environ Sci Technol 46(6):3465–3471. doi: 10.1021/es203951z CrossRefGoogle Scholar
  6. Demirak A, Yilmaz F, Tuna AL, Ozdemir N (2006) Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere 63(9):1451–1458. doi: 10.1016/j.chemosphere.2005.09.033 CrossRefGoogle Scholar
  7. Eleftheriadou M, Skoullos M (2003) Nutrient and trace metal distribution in the Gulf of Astakos, Aetoloakarnania, Greece. Global Nest Intern J 5(3): 127–133 (ISSN:1108-4006)Google Scholar
  8. FAO (Food and Agriculture Organization) (1983) Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fish Circ 464:5–10Google Scholar
  9. Fernandes C, Fontainhas -Fernandes A, Peixoto F, Salgado MA (2007) Bioaccumulation of heavy metals in Liza saliens from the Esmoriz-Paramos Coastal lagoon, Portugal. Ecotoxicol Environ Safety 66: 426–431. doi: 10.1016/j.ecoenv.2006.02.007
  10. FishBase (2011) Acanthopagrus latus (Houttuyn, 1782), Yellowfin Seabream. http://www.Fishbase.org/summary/Acanthopagrus-latus.html
  11. Hamilton SJ, Mehrle PM (1986) Methallothionein in fish: review of its importance in assessing stress from metal contaminants. Trans Am Fish Soc 115(4):596–609. doi: 10.1577/1548-8659 CrossRefGoogle Scholar
  12. Hosseinkhezri P, Tashkhourian J (2011) Determination of heavy metals in Acanthopagrus latus (Yellowfin seabream) from the Bushehr seaport (coastal of Persian Gulf), Iran. Intern Food Res J 18: 791–794. ISSN 19854668Google Scholar
  13. Jaleel T, Jaffar M, Ashraf M (1995) Selected trace metal and macronutrient contents of six fish species from the Arabian Sea Pakistan. Toxicol Environ Chem 50(1–4):207–212. doi: 10.1080/02772249509358216 Google Scholar
  14. Jean L, Olivier G, Louis Q, Alain D, Sylvie B, Esterine E, Jerome C, Yan C, Thibaut L, Ricardo R, Vianney P, Helene DM, Helene B (2013) Variation patterns in individual fish responses to chemical stress among estuaries, seasons and genders: the case of the European Flounder (Platychthys flesus) in the Bay of Biscay. Environ Sc Pollut Res 20(2):738–748. doi: 10.1007/s11356-012-1276-3 CrossRefGoogle Scholar
  15. Jirka GH (2004) Integral model for turbulent buoyant jets in unbounded stratified flows. Part 1: the single round jet. Environ Fluid Mech 4:1–56 Kluwer Academic PublishersCrossRefGoogle Scholar
  16. Mormede S, Davies IM (2001) Heavy metal concentrations in commercial deep-sea fish from the Rockall Trough. Cont Shelf Res 21(8–10):899–916. doi: 10.1016/S0278-4343(00)00118-7 CrossRefGoogle Scholar
  17. Nussey G, van Vuren JHJ, du Preez HH (2000) Bioaccumulation of chromium, manganese, nickel and lead in the tissues of the Moggel, Labeo umbratus (Cyprinidae), from Witbank Dam, Mpumalanga. Water SA 26 (2): 269–284. ISSN: 0378-4738. available on website http://www.wrc.org.za
  18. Oh BC, Kim YD, Kang SW, You SH (2000) Prediction of sea outfalls effluent transport using 3-D particle tracking model. International Conference MWWD2000, Genova, Italy, pp 65–72Google Scholar
  19. Panigrahi JK, Tripathy JK (2011) Numerical simulation of advection-dispersion for monitoring thermal plume re-circulation in a shallow Coastal environment. Appl Ecol Environ Res 9(4): 341–354. ISSN 1589 1623Google Scholar
  20. Roach AC, Maher W, Kirkowa F (2008) Assessment of metals in fish from Lake Macquarie, New South Wales Australia. Arch Environ Contam Toxicol 54(2):292–308. doi: 10.1007/s00244-007-9027-z CrossRefGoogle Scholar
  21. Shenwen C, Ni Zhaohui, Li Yunfeng, Ziwei S, ZAhiting X, Zhang Y, Yuntao z (2012) Metals in the tissues of two fish species from rare and endemic fish nature reserve in the upper reaches of the Yangtze River China. Bull Environ Contam Toxicol 88(6):922–927. doi: 10.1007/s00128-012-0564-4 CrossRefGoogle Scholar
  22. Tetsuro A, Takashi K, Genta Y, Hisato I, Annamalai S, Ahmad I, Shinsuke T (2005) Concentrations of trace elements in marine fish and its risk assessment in Malaysia. Mar Pollut Bull 51 (8–12): 896–911. doi: 10.1016/j.marpolbul.2005.06.007 Google Scholar
  23. USEPA (1993) Statistical analysis for biological methods, http://www.epa.gov/nerleerd/stat2.htm#probit,1
  24. WHO (World Health Organization) (1989) Heavy metals-environmental aspects. Environment Health Criteria, no. 85, World Health Organization, Geneva, SwitzerlandGoogle Scholar
  25. Wong PPK, Chu LM, Wong CK (1999) Study of toxicity and bioaccumulation of copper in the silver sea bream Sparus sarba. Environ Intern 25: 417–422. doi:  10.1016/S0160-4120(99)00008-2 Google Scholar
  26. Wood IR, Bell RG, Wilkinson DL (1993) Ocean disposal of wastewater. World Scientific Publishing Co. Pte Ltd, Singapore, p 385Google Scholar
  27. Yanguang D, Li Jun, Jingtao Z, Bangqi Hu, Shouye Y (2013) Distribution enrichment and source of heavy metals in surface sediments of the Eastern Beibu Bay South China Sea. Mar Pollut Bull 67(1–2):137–145. doi: 10.1016/j.marpolbul.2012.11.022 Google Scholar
  28. Yesim OE (2012) New assessment of heavy metal contamination in an eutrophicated Bay (Inner Izmir Bay, Turkey). Turk J Fish Aquat Sci 12(1):129–141. doi: 10.4194/1303-2712-v12_1_16 Google Scholar
  29. Zahra K, Reza K, Amin M, Maryam E, Majid A, Aida K (2012) Determination of Cd, Pb, Hg, Cu, Fe, Mn, Al, As, Ni and Zn in important commercial fish species in northern of Persian Gulf. J Cell Anim Biol 6(1):1–9. doi: 10.5897/JCAB11.078 Google Scholar
  30. Zhang XY, Adams EE (1999) Prediction of near field plume characteristics using far field circulation model. J Hydrol Eng ASCE 125(3):233–241. doi: 10.1061/(ASCE)0733-9429(1999)125:3(233 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2013

Authors and Affiliations

  1. 1.Department of ChemistryKuwait UniversityKuwait cityKuwait

Personalised recommendations