Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains

  • M. S. Fuentes
  • A. Alvarez
  • J. M. Saez
  • C. S. Benimeli
  • M. J. Amoroso
Original Paper

Abstract

Methoxychlor is an organochlorine pesticide used worldwide against several insect pests, resulting in human exposure. This pesticide mimics endocrine hormone functions, interfering with normal endocrine activity in humans and wildlife. For this reason, it is imperative to develop methods to remove this pesticide from the environment, and though, bioremediation using microorganisms results as an excellent strategy. Five Streptomyces spp. strains previously isolated from organochlorine-polluted sites and capable to grow and remove methoxychlor were combined as different mixed cultures to increase methoxychlor removal. From the 39 consortia tested, one consortium (Streptomyces spp. A6, A12, A14, M7) was selected because of its high pesticide removal and specific dechlorinase activity to be assayed on slurry and soil systems. This consortium showed higher biomass values (8.3 × 106 ± 5.7 × 105 CFU mL−1) and methoxychlor removal (56.2 ± 2.3 %) on enriched slurry than in non-enriched slurry (7.3 × 105 ± 1.2 × 105 CFU mL−1 and 45.6 ± 7.4 % of pesticide removal). In soil systems, Streptomyces consortium showed higher growth (1.0 × 1011 ± 5.0 × 1010 CFU g−1) than in enriched slurry, although differences in methoxychlor removal between both culture conditions were not statistically significant. Therefore, the selected Streptomyces consortium may be suitable for the development of in situ (soil) and ex situ (slurry bioreactor) bioremediation methods because of their potential to remove methoxychlor from different systems.

Keywords

Actinobacteria Bioremediation Organochlorine pesticide Slurry bioreactor Soil remediation 

Notes

Acknowledgments

This work was supported by Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Bunge y Born. We thank Mr. G. Borchia for technical assistance.

References

  1. Alvarez A, Yañez ML, Benimeli CS, Amoroso MJ (2012) Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. Int Biodeterior Biodegradation 66:14–18CrossRefGoogle Scholar
  2. ATSDR (1994) Toxicological profile for methoxychlor. Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  3. Baczynski TP, Pleissner D, Grotenhuis T (2010) Anaerobic biodegradation of organochlorine pesticides in contaminated soil—significance of temperature and availability. Chemosphere 78:22–28CrossRefGoogle Scholar
  4. Basavarajappa MS, Craig ZR, Hernández-Ochoa I, Paulose T et al (2011) Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in Vitro. Toxicol Appl Pharm 253:161–169CrossRefGoogle Scholar
  5. Benimeli CS, Amoroso MJ, Chaile AP, Castro RG (2003) Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Bioresour Technol 89:348–357CrossRefGoogle Scholar
  6. Benimeli CS, Castro GR, Chaile AP, Amoroso MJ (2006) Lindane removal induction by Streptomyces sp. M7. J Basic Microbiol 46:348–357CrossRefGoogle Scholar
  7. Benimeli CS, Castro GR, Chaile AP, Amoroso MJ (2007) Lindane uptake and degradation by aquatic Streptomyces sp. Strain M7. Int Biodeterior Biodegradation 59:148–155CrossRefGoogle Scholar
  8. Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane contaminated soil by Streptomyces sp M7 and its effects on Zea mays growth. Int Biodeterior Biodegradation 61:233–239CrossRefGoogle Scholar
  9. Bidlan R, Afsar M, Manonmani HK (2004) Bioremediation of HCH-contaminated soil: elimination of inhibitory effects of the insecticide on radish and green gram seed germination. Chemosphere 56:803–811CrossRefGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  11. Calabrese EJ (2005) Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138:378–411CrossRefGoogle Scholar
  12. Calvelo Pereira R, Monterroso C, Macías F (2010) Phytotoxicity of hexachlorocyclohexane: effect on germination and early growth of different plant species. Chemosphere 79:326–333CrossRefGoogle Scholar
  13. Cookson JT (1995) Bioremediation engineering: design and application. McGraw-Hill, New YorkGoogle Scholar
  14. Crisp TM, Clegg ED, Cooper RL, Wood WP et al (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106:11–56CrossRefGoogle Scholar
  15. De Schrijver A, De Mot R (1999) Degradation of pesticides by actinomycetes. Crit Rev Microbiol 25:85–119CrossRefGoogle Scholar
  16. Delille D, Coulon F, Pelletier E (2004) Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg Sci Technol 40:61–70CrossRefGoogle Scholar
  17. Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics and biotechnological applications. Microbiol Rev 58:641–685Google Scholar
  18. Fogel S, Lancione RL, Sewall AE (1982) Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions. Appl Environ Microb 44:113–120Google Scholar
  19. Fort DJ, Guiney PD, Weeks JA, Thomas JH et al (2004) Effect of methoxychlor on various life stages of Xenopus laevis. Toxicol Sci 81:454–466CrossRefGoogle Scholar
  20. Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeterior Biodegradation 64:434–441CrossRefGoogle Scholar
  21. Fuentes MS, Sáez JM, Benimeli CS, Amoroso MJ (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222:217–231CrossRefGoogle Scholar
  22. Gao Y, Ren L, Ling W, Gong S et al (2010) Desorption of phenanthrene and pyrene in soils by root exudates. Bioresour Technol 101:1159–1165CrossRefGoogle Scholar
  23. Garcia-Rivero M, Peralta-Pérez MR (2008) Cometabolism in the biodegradation of hydrocarbons. Revista Mexicana de Ingenieria Biomedica 7:1–12Google Scholar
  24. Moradas G, Auresenia J, Gallardo S, Guieysse B (2008) Biodegradability and toxicity assessment of trans-chlordane photochemical treatment. Chemosphere 73:1512–1517CrossRefGoogle Scholar
  25. Grifoll M, Hammel KE (1997) Initial steps in the degradation of methoxychlor by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 63:1175–1177Google Scholar
  26. Hamdi H, Benzarti S, Manusadzianas L, Aoyama I et al (2007) Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935CrossRefGoogle Scholar
  27. Hopwood DA (1967) Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev 31:373–403Google Scholar
  28. Keum YS, Lee YH, Kim JH (2009) Metabolism of Methoxychlor by Cunninghamella elegans ATCC36112. J Agric Food Chem 57:7931–7937CrossRefGoogle Scholar
  29. Lal R, Pandey G, Sharma P, Kumari K et al (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80CrossRefGoogle Scholar
  30. Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth Sci Rev 51:1–31CrossRefGoogle Scholar
  31. Lee SM, Lee JW, Park KR, Hong EJ et al (2006) Biodegradation of methoxychlor and its metabolites by the white rot fungus Stereum hirsutum related to the inactivation of estrogenic activity. J Environ Sci Health, Part B 41:385–397CrossRefGoogle Scholar
  32. Liu SY, Lu MH, Bollag JM (1990) Transformation of metachlor in soil inoculated with Streptomyces sp. Biodegradation 1:9–17CrossRefGoogle Scholar
  33. Liu WX, Luo YM, Teng Y, Li ZG et al (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32:23–29CrossRefGoogle Scholar
  34. Llados F, Sage G, Citra M, Gefell D (2002) Toxicological profile for DDT, DDE and DDD (Update), TP-35. Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  35. Masuda M, Satsuma K, Sato K (2012) An environmental fate study of methoxychlor using water-sediment model system. Biosci Biotechnol Biochem 76:73–77CrossRefGoogle Scholar
  36. Metcalf RL (1976) Organochlorine insecticides, survey and prospects. In: Metcalf RL, McKelevey JJ (eds) Insecticides for the future: needs and prospects. Wiley, New York, pp 223–285Google Scholar
  37. Phillips TM, Seech AG, Lee H, Trevors JT (2001) Colorimetric assay for lindane dechlorination by bacteria. J Microbiol Meth 47:181–188CrossRefGoogle Scholar
  38. Quintero JC, Moreira MT, Feijoo G, Lema JM (2005) Effects of surfactants on the soil desorption of hexachlorocyclohexane (HCH) isomers and their anaerobic biodegradation. J Chem Technol Biotechnol 80:1005–1015CrossRefGoogle Scholar
  39. Radosevich M, Traina SJ, Hao YL, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol 61:297–302Google Scholar
  40. Robles-González IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Fact 7:1–16CrossRefGoogle Scholar
  41. Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195CrossRefGoogle Scholar
  42. Satsuma K, Masuda M (2012) Reductive dechlorination of methoxychlor by bacterial species of environmental origin: evidence for primary biodegradation of methoxychlor in submerged environments. J Agric Food Chem 60:2018–2023CrossRefGoogle Scholar
  43. Siripattanakul S, Wirojanagud W, McEvoy J, Limpiyakorn T et al (2009) Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. J Appl Microbiol 106:986–999CrossRefGoogle Scholar
  44. Staub C, Hardy VB, Chapin RE, Harris MW et al (2002) The hidden effect of estrogenic/antiandrogenic methoxychlor on spermatogenesis. Toxicol Appl Pharmacol 180:129–135CrossRefGoogle Scholar
  45. Stuchal LD, Kleinow KM, Stegeman JJ, James MO (2006) Demethylation of the pesticide methoxychlor in liver and intestine from untreated, methoxychlor-treated, and 3-methylcholanthrene-treated channel catfish (Ictalurus punctatus): evidence for roles of cyp1 and cyp3a family isozymes. Drug Metab Dispos 34:932–938Google Scholar
  46. U.S. E.P.A. (1996) Method 3540 C. Test methods for evaluating solid waste, 3rd edn, US EPA SW-846, Update III, US NTIS, Springfield, VAGoogle Scholar
  47. Xu LH, Li QR, Jiang CL (1996) Diversity of soil actinomycetes in Yunnan, China. Appl Environ Microbiol 62:244–248Google Scholar
  48. Yang C, Li Y, Zhang K, Wang X et al (2010) Atrazine degradation by a simple consortium of Klebsiella sp. A1 and Comamonas sp. A2 in nitrogen enriched medium. Biodegradation 21:97–105CrossRefGoogle Scholar
  49. Yim Y-J, Seo J, Kang S-I, Ahn J-H et al (2008) Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions. Arch Environ Contam Toxicol 54:406–411CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2013

Authors and Affiliations

  • M. S. Fuentes
    • 1
  • A. Alvarez
    • 1
    • 2
  • J. M. Saez
    • 1
  • C. S. Benimeli
    • 3
    • 5
  • M. J. Amoroso
    • 1
    • 3
    • 4
  1. 1.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)CONICETSan Miguel de TucumánArgentina
  2. 2. Facultad de Ciencias Naturales e Instituto Miguel LilloUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
  3. 3. Universidad del Norte Santo Tomás de AquinoSan Miguel de TucumánArgentina
  4. 4. Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
  5. 5.Unidad de Administración TerritorialCentro Científico Tecnológico, CONICET-TucumánSan Miguel de TucumánArgentina

Personalised recommendations