Interactions between algicidal bacteria and the cyanobacterium Microcystis aeruginosa: lytic characteristics and physiological responses in the cyanobacteria

  • J. Shao
  • Y. Jiang
  • Z. Wang
  • L. Peng
  • S. Luo
  • J. Gu
  • R. LiEmail author
Original Paper


Application of algicidal bacteria is a promising and environmentally friendly way to control cyanobacterial blooms. Lytic effects of the algicidal bacteria on Microcystis aeruginosa have been observed, but the interactions between algicidal bacteria and the cyanobacteria are still elusive. An algicidal bacterium Bacillus sp. B50 isolated from Lake Donghu showed a highly lytic efficiency on M. aeruginosa NIES-843 through heat-resistant extracellular substances from strain B50. The cell density of strain B50 could be maintained at high levels during the lytic process in bacteria–Microcystis system with inoculation densities of 1.9 × 106 and 1.9 × 107 cfu/mL, resulting in the death of M. aeruginosa NIES-843. However, the population dynamics of strain B50 was a bell-shaped curve at low inoculation densities and no lytic effect could be observed. Results of physiological responses suggested that the lytic efficiency may be mediated through inhibition of metabolism and production of reactive oxygen species.


Bacillus sp. Gene expressions Lytic characteristics Microcystis aeruginosa Oxidative stress Photosynthesis inhibition 



The research was supported by National Natural Science Foundation of China (No. 21107024), Hunan Provincial Natural Science Foundation of China (10JJ6045), and the Foundation of Furong Scholar project of Hunan Province. Professor Joe Lepo (University of West Florida) provided language assistance and useful suggestions in an early draft of this manuscript.


  1. Anderson DM (1997) Turning back the harmful red tides. Nature 38:513–514CrossRefGoogle Scholar
  2. Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134CrossRefGoogle Scholar
  3. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193CrossRefGoogle Scholar
  4. Carmichael WW (1995) Toxic Microcystis in the environment. In: Watanabe MF, Harada K, Carmichael WW, Fujiki H (eds) Toxic Microcystis. CRC Press, New York, pp 1–12Google Scholar
  5. Fraleigh PC, Burnham JC (1988) Myxococcus predation on cyanobacterial nutrient effects. Limnol Oceanogr 33:476–483CrossRefGoogle Scholar
  6. Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833–842CrossRefGoogle Scholar
  7. Griffiths HR (2005) Chemical modifications of biomolecules by oxidants. Handb Environ Chem 2:33–62Google Scholar
  8. Hong Y, Hu HY, Li FM (2008) Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Ecotox Environ Safe 71:527–534CrossRefGoogle Scholar
  9. Ichimura T (1979) Media for freshwater cyanobacteria. In: Nishizawa K, Chihara M (eds) Methods in phycology. Kyouritsu Shuppan, Tokyo, pp 295–296Google Scholar
  10. Juttner F, Luthi H (2008) Topology and enhanced toxicity of bound microcystins in Microcystis PCC 7806. Toxicon 51:388–397CrossRefGoogle Scholar
  11. Kang YH, Kim JD, Kim BH, Kong DS, Han MS (2005) Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. J Appl Microbiol 98:1030–1038CrossRefGoogle Scholar
  12. Kennelly PJ, Potts M (1999) Life among the primitives: protein O-phosphatases in prokaryotes. Front Biosc 4:372–385CrossRefGoogle Scholar
  13. Kim B, Hwang S, Kim Y, Hwang S, Takamura N, Han M (2007) Effects of biological control agents on nuisance cyanobacterial and diatom blooms in freshwater systems. Microbes Environ 22:52–58CrossRefGoogle Scholar
  14. Kodani S, Akiko I, Mitsutani A, Murakami M (2002) Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J Appl Phycol 14:109–114CrossRefGoogle Scholar
  15. Kurmayer R, Kutzenberger T (2003) Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl Environ Microbiol 69:6723–6730CrossRefGoogle Scholar
  16. Latifi A, Ruiz M, Jeanjean R, Zhang CC (2007) PrxQ-A, a member of the peroxiredoxin Q family, plays a major role in defense against oxidative stress in the cyanobacterium Anabaena sp. strain PCC7120. Free Radic Bio Med 42:424–431CrossRefGoogle Scholar
  17. Lee YK, Ahn CY, Kim HS, Oh HM (2010) Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp. Biotechnol Lett 32:1673–1678CrossRefGoogle Scholar
  18. Lin S, Wu Z, Yu G, Zhu M, Yu B, Li R (2010) Genetic diversity and molecular phylogeny of Planktothrix (Oscillatoriales, cyanobacteria) strains from China. Harmful Algae 9:87–97CrossRefGoogle Scholar
  19. Manage PM, Kawabata Z, Nakano S (2000) Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat Microb Ecol 22:111–117CrossRefGoogle Scholar
  20. Mayali X, Doucette GJ (2002) Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1:277–293CrossRefGoogle Scholar
  21. Mazouni K, Domain F, Cassier-Chauvat C, Chauvat F (2004) Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ, ZipN and MinCDE. Mol Microbiol 52:1145–1158CrossRefGoogle Scholar
  22. Mu RM, Fan ZQ, Pei HY, Yuan XL, Liu SX, Wang XR (2007) Isolation and algae-lysing characteristics of the algicidal bacterium B5. J Environ Sci (China) 19:1336–1340CrossRefGoogle Scholar
  23. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332Google Scholar
  24. Pan G, Zhang MM, Chen H, Zou H, Yan H (2006) Removal of cyanobacterial blooms in Taihu Lake using local soils I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ Pollut 141:195–200CrossRefGoogle Scholar
  25. Pearson LA, Neilan BA (2008) The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr Opin Biotech 19:281–288CrossRefGoogle Scholar
  26. Richards FA, Thompson TG (1952) The estimation and characterization of plankton populations by pigment analyses. II. A spectrophotometric method for the estimation of plankton pigments. J Marine Res 11:156–172Google Scholar
  27. Shao J, Wu Z, Yu G, Pen X, Li R (2009) Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (cyanobacteria): from views of gene expression and antioxidant system. Chemosphere 75:924–928CrossRefGoogle Scholar
  28. Song L, Chen W, Peng L, Wan N, Gan N, Zhang X (2007) Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res 41:2853–2864CrossRefGoogle Scholar
  29. Swarnamukhi PL, Sharma SK, Bajaj P, Surolia N, Surolia A, Suguna K (2006) Crystal structure of dimeric FabZ of Plasmodium falciparum reveals conformational switching to active hexamers by peptide flips. FEBS Lett 580:2653–2660CrossRefGoogle Scholar
  30. Tucker S, Pollard P (2005) Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus. Appl Environ Microbiol 71:629–635CrossRefGoogle Scholar
  31. Urbach E, Robertsin D, Chisholm S (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–270CrossRefGoogle Scholar
  32. Vickerman MM, Brossard KA, Funk DB, Jesionowski AM, Gill SR (2007) Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections. J Med Microbiol 56:110–118CrossRefGoogle Scholar
  33. Wang Q, Su M, Zhu W, Li X, Jia Y, Guo P, Chen Z, Jiang W, Tian X (2010) Growth inhibition of Microcystis aeruginosa by white-rot fungus Lopharia spadicea. Water Sci Technol 62:317–323CrossRefGoogle Scholar
  34. Welker M, von Döhren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563CrossRefGoogle Scholar
  35. Yang CY, Zhou SW, Xia CH, Liu YD (2009) The effect of microcystin-RR on the growth and physiological characteristics of denitrifying bacteria. Chin J Environ Pollut Control 31:7–10Google Scholar

Copyright information

© Islamic Azad University (IAU) 2013

Authors and Affiliations

  • J. Shao
    • 1
  • Y. Jiang
    • 2
  • Z. Wang
    • 2
  • L. Peng
    • 1
  • S. Luo
    • 1
  • J. Gu
    • 3
    • 4
  • R. Li
    • 2
    Email author
  1. 1.College of Resources and EnvironmentHunan Agricultural UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanPeople’s Republic of China
  3. 3.Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources UseHunan Agricultural UniversityChangshaPeople’s Republic of China
  4. 4.Laboratory of Environmental Microbiology and Toxicology, School of Biological SciencesThe University of Hong KongHong Kong SARPeople’s Republic of China

Personalised recommendations