Co-contamination of water with chlorinated hydrocarbons and heavy metals: challenges and current bioremediation strategies

Review

Abstract

Chlorinated hydrocarbons can cause serious environmental and human health problems as a result of their bioaccumulation, persistence and toxicity. Improper disposal practices or accidental spills of these compounds have made them common contaminants of soil and groundwater. Bioremediation is a promising technology for remediation of sites contaminated with chlorinated hydrocarbons. However, sites co-contaminated with heavy metal pollutants can be a problem since heavy metals can adversely affect potentially important biodegradation processes of the microorganisms. These effects include extended acclimation periods, reduced biodegradation rates, and failure of target compound biodegradation. Remediation of sites co-contaminated with chlorinated organic compounds and toxic metals is challenging, as the two components often must be treated differently. Recent approaches to increasing biodegradation of organic compounds in the presence of heavy metals include the use of dual bioaugmentation; involving the utilization of heavy metal-resistant bacteria in conjunction with an organic-degrading bacterium. The use of zero-valent irons as a novel reductant, cyclodextrin as a complexing agent, renewable agricultural biosorbents as adsorbents, biosurfactants that act as chelators of the co-contaminants and phytoremediation approaches that utilize plants for the remediation of organic and inorganic compounds have also been reported. This review provides an overview of the problems associated with co-contamination of sites with chlorinated organics and heavy metals, the current strategies being employed to remediate such sites and the challenges involved.

Keywords

Bioaugmentation Biosorbents Chlorinated compounds Cyclodextrin Heavy metals Zero-valent irons 

References

  1. Abdel-Ghani NT, Hefny M, El-Chaghaby GAF (2007) Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int. J. Environ. Sci. Tech. 4(1):67–73Google Scholar
  2. Addagalla VA, Naif AD, Hilal N (2009) Study of various parameters in the biosorption of heavy metals on activated sludge. World Appl Sci J 5:32–40 (Special Issue for Environment)Google Scholar
  3. Akporhonor EE, Egwaikhide PA (2007) Removal of selected metal ions from aqueous solution by adsorption onto chemically modified maize cobs. Sci Res Essays 2(4):132–134Google Scholar
  4. Alshaebi FY, Yaacob WZW, Samsuldin AR (2009) Sorption on zero -valent iron (ZVI) for arsenic removal. Eur J Sci Res 33(2):214–219Google Scholar
  5. Ashraf MA, Wajid A, Mahmood K (2011) Low cost biosorbent banana peel (Musa sapientum) for the removal of heavy metals. Sci Res Essays 6(19):4055–4064Google Scholar
  6. Azouaou N, Sadaoui Z, Mokaddem H (2008) Removal of cadmium from aqueous solution by adsorption on vegetable wastes. J Appl Sci 8(24):4638–4643CrossRefGoogle Scholar
  7. Baath E (1989) Effects of heavy-metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47(3–4):335–379CrossRefGoogle Scholar
  8. Baldrian P, Der Wiesche CI, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66(6):2471–2478CrossRefGoogle Scholar
  9. Balestrazzi A, Bonadei M, Quattrini E, Carbonera D (2009) Occurrence of multiple metal-resistance in bacterial isolates associated with transgenic white poplars (Populus alba L.). Ann Micro 59(1):17–23CrossRefGoogle Scholar
  10. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27(2–3):355–384CrossRefGoogle Scholar
  11. Bhatnagar A, Vilar VJP, Botelho CMS, Boaventura RAR (2010) Coconut-based biosorbents for water treatment—a review of the recent literature. Adv Colloid Interface Sci 160:1–15CrossRefGoogle Scholar
  12. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186(1):458–465CrossRefGoogle Scholar
  13. Borsetti F, Francia F, Turner RJ, Zannoni D (2007) The thioldisulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO3 2−) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. J Bacteriol 189(3):851–859CrossRefGoogle Scholar
  14. Boving TB, McCray JE (2000) Cyclodextrin-enhanced remediation of organic and metal contaminants in porous media and groundwater. Remed J 10(2):59–83CrossRefGoogle Scholar
  15. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207CrossRefGoogle Scholar
  16. Brusseau ML, Wang X, Wang W (1997) Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environ Sci Tech 31(4):1087–1092CrossRefGoogle Scholar
  17. Cathum SJ, Boudreau A, Obenauf A, Dumouchel A, Brown CE, Punt M (2006) Treatment of mixed contamination in water using cyclodextrin-based materials. Remed J 16(4):43–56CrossRefGoogle Scholar
  18. Cervantes C, Espino-Saldaña AE, Acevedo-Aguilar F, León-Rodriguez IL, Rivera-Cano ME, Avila-Rodríguez M, Wróbel-Kaczmarczyk K, Wróbel-Zasada K, Gutiérrez-Corona JF, Rodríguez-Zavala JS, Moreno-Sánchez R (2006) Microbial interactions with heavy metals. Rev Latinoam Microbiol 48(2):203–210Google Scholar
  19. Chatain V, Hanna K, Brauer C, Bayard R, Germain P (2004) Enhanced solubilization of arsenic and 2,3,4,6 tetrachlorophenol from soils by a cyclodextrin derivative. Chemosphere 57(3):197–206CrossRefGoogle Scholar
  20. Chen H, Chen C, Reddy AS, Chen C, Li WR, Tseng M, Liu H, Pan W, Maity JP, Atla SB (2011) Removal of mercury by foam fractionation using surfactin, a biosurfactant. Int J Mol Sci 12(11):8245–8258CrossRefGoogle Scholar
  21. Cheng IF, Fernando Q, Korte N (1997) Electrochemical dechlorination of 4-chlorophenol to phenol. Environ Sci Tech 31(4):1074–1078CrossRefGoogle Scholar
  22. Crannell BS, Eighmy TT, Krzanowski JE, Eusden JD Jr, Shaw EL, Francis CA (2000) Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate. Waste Manag 20(2–3):135–148CrossRefGoogle Scholar
  23. Dahrazma B, Mulligan CN (2007) Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 69(5):705–711CrossRefGoogle Scholar
  24. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035CrossRefGoogle Scholar
  25. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046CrossRefGoogle Scholar
  26. Deng N, Luo F, Wu F, Xiao M, Wum X (2000) Discoloration of aqueous reactive dye solutions in the UV/Fe0 system. Water Res 34(8):2408–2411CrossRefGoogle Scholar
  27. Doong RA, Lee CC, Chen KT, Wu SF (2004) Coupled reduction of chlorinated hydrocarbons and heavy metals by zerovalent silicon. Water Sci Technol 50(8):89–96Google Scholar
  28. Dries J, Bastiaens L, Springael D, Kuypers S, Agathos SN, Diels L (2005) Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water Res 39(15):3531–3540CrossRefGoogle Scholar
  29. Ehsan S, Prasher SO, Marshall WD (2007) Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68(1):150–158CrossRefGoogle Scholar
  30. Fernandes VC, Albergaria JT, Oliva-Teles T, Delerue-Matos C, De-Marco P (2009) Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil. Biodegradation 20(3):375–382CrossRefGoogle Scholar
  31. Field JA, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Biotechnol 3(3):185–254CrossRefGoogle Scholar
  32. Fierens S, Mairess H, Heilier JF, De Burbure C, Focant JF, Eppe G, De Pauw E (2003) Dioxin/polychlorinated biphenyl body burden, diabetes and endometriosis: findings in a population-based study in Belgium. Biomarkers 8(6):529–534CrossRefGoogle Scholar
  33. Foulkes EC (1998) Biological membranes in toxicology. Taylor & Francis, PhiladelphiaGoogle Scholar
  34. Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185(13):3804–3812CrossRefGoogle Scholar
  35. Geslin C, Llanos J, Prieur D, Jeanthon C (2001) The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol 152(10):901–905CrossRefGoogle Scholar
  36. Gheju M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut 222(1–4):103–148CrossRefGoogle Scholar
  37. Gibb C, Satapanajaru T, Comfort SD, Shea PJ (2004) Remediating dicamba-contaminated water with zerovalent iron. Chemosphere 54(7):841–848CrossRefGoogle Scholar
  38. Gonen F, Serin DS (2012) Adsorption study on orange peel: removal of Ni(II) ions from aqueous solution. Afr J Biotech 11(5):1250–1258Google Scholar
  39. Gotpagar J, Grulke E, Tsang T, Bhattacharyya D (2007) Reductive dehalogenation of trichloroethylene using zero-valent iron. Environ Progr 16(2):137–143CrossRefGoogle Scholar
  40. Goulhen F, Gloter A, Guyot F, Bruschi M (2006) Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies. Appl Microbiol Biotech 7(6):892–897CrossRefGoogle Scholar
  41. Grass G, Fan B, Rosen BP, Franke S, Nies DH, Rensing C (2001) ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 183(15):4664–4667CrossRefGoogle Scholar
  42. Gribble GW (1996) The diversity of natural organochlorines in living organisms. Pure Appl Chem 68(9):1699–1712CrossRefGoogle Scholar
  43. Grittini C, Malcomson M, Fernando Q, Korte N (1995) Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ Sci Tech 29(11):2898–2900CrossRefGoogle Scholar
  44. Gunawardana B, Singhal N, Swedlund P (2011) Degradation of chlorinated phenols by zero valent iron and bimetals of iron: a review. Environ Eng Res 16(4):187–203CrossRefGoogle Scholar
  45. Hanberg A (1996) Toxicology of environmentally persistent chlorinated organic compounds. Pure Appl Chem 68(9):1791–1799CrossRefGoogle Scholar
  46. Hardy LI, Gillham RW (1996) Formation of hydrocarbons from the reduction of aqueous CO2 by zero-valent iron. Environ Sci Tech 30(1):57–65CrossRefGoogle Scholar
  47. Hazra C, Kundu D, Ghosh P, Joshi D, Dandia N, Chaudharia A (2011) Screening and identification of Pseudomonas aeruginosa AB4 for improved production, characterization and application of a glycolipid biosurfactant using low-cost agro-based raw materials. J Chem Technol Biotechnol 86(2):185–198CrossRefGoogle Scholar
  48. Herman DC, Artiola JF, Miller RM (1995) Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ Sci Tech 29(9):2280–2285CrossRefGoogle Scholar
  49. Hileman B (1993) Concerns broaden over chlorine and chlorinated hydrocarbons. Chem Eng News 71(16):11–20CrossRefGoogle Scholar
  50. Hocheolsong E, Carraway R (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Tech 39(16):6237–6245CrossRefGoogle Scholar
  51. Hughes MN, Poole RK (1991) Metal speciation and microbial growth—the hard (and soft) facts. J Gen Microbiol 137(4):725–734Google Scholar
  52. Igwe JC, Abia AA (2005) Sorption kinetics and intraparticulate diffusivities of Cd, Pb and Zn ions on maize cob, Pb and Zn ions on maize cob. Afr J Biotech 4(6):509–512Google Scholar
  53. Igwe JC, Abia AA (2007) Studies on the effects of temperature and particle size on bioremediation of AS (III) from aqueous solution using modified and unmodified coconut fiber. Glob J Environ Res 1(1):22–26Google Scholar
  54. Igwe JC, Nwokennayal EC, Abia AA (2005) The role of pH in heavy metal detoxification by biosorption from aqueous solutions containing chelating agents. Afr J Biotechol 4(10):1109–1112Google Scholar
  55. Imagawa A, Seto R, Nagaosa Y (2000) Adsorption of chlorinated hydrocarbons from air and aqueous solutions by carbonized rice husk. Carbon 38(4):623–641CrossRefGoogle Scholar
  56. Inoaoka T, Matsumura Y, Tsuchido T (1999) SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtillis. J Bacteriol 181(6):1939–1943Google Scholar
  57. Janda V, Vasek P, Bizova J, Belohlav Z (2004) Kinetic models for volatile chlorinated hydrocarbons removal by zero-valent iron. Chemosphere 54(7):917–925CrossRefGoogle Scholar
  58. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182CrossRefGoogle Scholar
  59. Jeffrey WW, Silver S (1984) Bacterial resistance and detoxification of heavy metals. Enzym Microb Tech 6(12):530–537CrossRefGoogle Scholar
  60. Ji G, Silver S (1995) Bacterial resistance mechanism for heavy metals of environmental concern. J Ind Microbiol 14(2):61–75CrossRefGoogle Scholar
  61. Junyapoon S (2005) Use of zero-valent iron for wastewater treatment. KMITL Sci Tech J 5(3):587–595Google Scholar
  62. Khan MN, Wahab MF (2007) Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. J Hazard Mater 14(1):237–244CrossRefGoogle Scholar
  63. Kim Y, Carraway ER (2000) Dechlorination of pentachlorophenol by zero valent iron and modified Zero valent irons. Environ Sci Tech 34(10):2014–2017CrossRefGoogle Scholar
  64. Kim J, Vipulanandan C (2006) Removal of lead from contaminated water and clay soil using a biosurfactant. J Environ Eng 132(7):777–786CrossRefGoogle Scholar
  65. Kong IC (1998) Metal toxicity on the dechlorination of monochlorophenols in fresh and acclimated anaerobic sediment slurries. Water Sci Technol 38(7):143–150CrossRefGoogle Scholar
  66. Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97(1):104–109CrossRefGoogle Scholar
  67. Kuo C, Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62(7):2317–2323Google Scholar
  68. Lasheen MR, Ammar NS, Ibrahim HS (2012) Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies. Solid State Sci 14(2):202–210CrossRefGoogle Scholar
  69. Lee T, Lim H, Lee Y, Park JW (2003) Use of waste iron metal for removal of Cr(VI) from water. Chemosphere 53(5):479–485CrossRefGoogle Scholar
  70. Lee W, Wood TK, Chen W (2006) Engineering TCE-degrading Rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnol Bioeng 95(3):399–403CrossRefGoogle Scholar
  71. Lee SH, Lee WS, Lee CH, Kim JG (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898Google Scholar
  72. Lee KY, Strand SE, Doty SL (2012) Phytoremediation of Chlorpyrifos by Populus and Salix. Inter J Phytoremediation 14(1):48–61CrossRefGoogle Scholar
  73. Lehr JH, Hyman M, Gass TE, Seevers WJ (2001) Handbook of complex environmental remediation problems. McGraw-Hill, New YorkGoogle Scholar
  74. Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44(1):19–41CrossRefGoogle Scholar
  75. Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study ith high resolution X-Ray photoelectron spectroscopy (Hr-Xps). J Phys Chem 111(19):6939–6946Google Scholar
  76. Li Z, Tang Y, Cao X, Lu D, Luo F, Shao W (2008) Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloids Surf A Physicochem Eng Asp 317(1–3):512–521CrossRefGoogle Scholar
  77. Lien H, Jhuo Y, Chen L (2007) Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles. Environ Eng Sci 24(1):21–30CrossRefGoogle Scholar
  78. Lin CJ, Lo SL, Liou YH (2004) Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. J Hazard Mater 116(3):219–228CrossRefGoogle Scholar
  79. Lohmeier-Vogel EM, Ung S, Turner RJ (2004) In vivo P nuclear magnetic resonance investigation of tellurite toxicity in Escherichia coli. Appl Environ Microbiol 70(12):7342–7347CrossRefGoogle Scholar
  80. Lookman R, Bastiaens L, Borremans B, Maesen M, Gemoets J, Diels L (2004) Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron. J Contam Hydrol 74(1–4):133–144CrossRefGoogle Scholar
  81. Mahvi AH, Diels L (2004) Biological removal of cadmium by Alcaligenes eutrophus CH34. Int J Environ Sci Tech 1(3):199–204Google Scholar
  82. Mani D, Sharma B, Kumar C, Pathak N, Balak S (2012) Phytoremediation potential of Helianthus annuus L in sewage-irrigated indo-gangetic alluvial soils. Int J Phytoremediation 14:235–246CrossRefGoogle Scholar
  83. Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053CrossRefGoogle Scholar
  84. McEntee JD, Woodrow JR, Quirk AV (1986) Investigation of cadmium resistance in Alcaligenes sp. Appl Environ Microbiol 51(3):515–520Google Scholar
  85. Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9(1):17–24CrossRefGoogle Scholar
  86. Misra TK (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27(1):4–16CrossRefGoogle Scholar
  87. Mokhtar H, Morad N, Fizri FFA (2011) Phytoaccumulation of copper from aqueous solutions using Eichhornia crassipes and Centella asiatica. Int J Environ Sci Dev 2(3):205–210Google Scholar
  88. Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375CrossRefGoogle Scholar
  89. Mulligan CN, Wang S (2006) Remediation of a heavy metal-contaminated soil by a rhamnolipid foam. Eng Geol 85(1–2):75–81CrossRefGoogle Scholar
  90. Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85(1–2):111–125CrossRefGoogle Scholar
  91. Murthy CVR, Ramesh P, Ramesh A (2011) Study of biosorption of Cu(II) from aqueous solutions by coconut shell powder. Chem Sci J CSJ-17Google Scholar
  92. Namasivayam C, Kavitha D (2006) IR, XRD and SEM studies on the mechanism of adsorption of dyes and phenols by coir pith carbon from aqueous phase. Microchem J 82(1):43–48CrossRefGoogle Scholar
  93. Ndimele PE, Jenyo-Oni A, Jibuike CC (2009) The levels of lead (Pb) in water, sediment and a commercially important fish species (Chrysichthys nigrodigitatus) (Lacepede, 1803) from Ologe Lagoon, Lagos. Nigeria. J Environ Ext 8:70–75Google Scholar
  94. Nieboer M, Vis AJ, Witholt B (1996) Overproduction of a foreign membrane protein in Escherichia coli stimulates and depends on phospholipid synthesis. Eur J Biochem 241(2):691–696CrossRefGoogle Scholar
  95. Nies DH (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4(2):77–82CrossRefGoogle Scholar
  96. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2–3):313–339CrossRefGoogle Scholar
  97. Ning-chuan F, Xue-yi G, Sha L (2010) Enhanced Cu(II) adsorption by orange peel modified with sodium hydroxide. Trans Nonferrous Met Soc China 20(12):146–152Google Scholar
  98. Nzengung VA, Wolfe LN, Rennels DE, McCutcheon SC, Wang C (1999) Use of aquatic plants and algae for decontamination of waters polluted with chlorinated alkanes. Int J Phytoremediation 1(3):203–226CrossRefGoogle Scholar
  99. Palmroth MRT, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84(3):221–228Google Scholar
  100. Pardue JH, Kongara S, Jones WJ (1996) Effect of cadmium on reductive dechlorination of trichloroaniline. Environ Toxicol Chem 15(7):1083–1088Google Scholar
  101. Pomposiello PJ, Demple B (2002) Global adjustment of microbial physiology during free radical stress. Adv Microb Physiol 46:319–341CrossRefGoogle Scholar
  102. Puls RW, Paul CJ, Powell RM (1999) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate contaminated groundwater: a field test. Appl Geochem 14(8):989–1000CrossRefGoogle Scholar
  103. Rasmussen LD, Sorensen SJ, Turner RR, Barkay T (2000) Application of a merlux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32(5):639–649CrossRefGoogle Scholar
  104. Ravera O, Cenci R, Beon GM, Dantas M, Lodigiani P (2003) Trace element concentrations in freshwater mussels and macrophytes as related to those in their environment. J Limnol 62(1):61–70CrossRefGoogle Scholar
  105. Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67(7):3208–3215CrossRefGoogle Scholar
  106. Rouch DA, Lee BTD, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism choice in bacterial metal resistance. J Ind Microbiol 14(2):132–141CrossRefGoogle Scholar
  107. Sag Y, Kutsal T (2000) Determination of the biosorption activation energies of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Process Biochem 35(8):801–807CrossRefGoogle Scholar
  108. Said WA, Lewis DL (1991) Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl Environ Microbiol 57(5):1498–1503Google Scholar
  109. Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water 39(8):735–741CrossRefGoogle Scholar
  110. Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111(8):1093–1101CrossRefGoogle Scholar
  111. Sandrin TR, Chech AM, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during biodegradation of naphthalene. Appl Environ Microbiol 66(10):4585–4588CrossRefGoogle Scholar
  112. Sar A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160(2–3):349–355CrossRefGoogle Scholar
  113. Say R, Denizli A, Aroca MY (2001) Biosorption of cadmium (II), lead (II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76(1):67–70CrossRefGoogle Scholar
  114. Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73(4):601–621CrossRefGoogle Scholar
  115. Schiewer S, Balaria A (2009) Biosorption of Pb2+ by original and protonated citrus peels: equilibrium, kinetics, and mechanism. Chem Eng J 146(2):211–219CrossRefGoogle Scholar
  116. Schiewer S, Patil SB (2008) Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresour Technol 99(6):1896–1903CrossRefGoogle Scholar
  117. Scott JA, Palmer SJ (1990) Sites of cadmium uptake in bacteria used for biosorption. Appl Environ Microbiol 33(2):221–225Google Scholar
  118. Shao-ping T, Hong W, Chun-an M, Wei-ping L (2005) Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water. J Zhejiang Univ Sci 6A(7):627–631CrossRefGoogle Scholar
  119. Shirdam R, Khanafari A, Tabatabaee A (2006) Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iran J Biotechnol 4(3):180–187Google Scholar
  120. Shokes TE, Moller G (1999) Removal of dissolved heavy metals from acid rock drainage using iron metal. Environ Sci Technol 33(2):282–287CrossRefGoogle Scholar
  121. Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179(1):9–19CrossRefGoogle Scholar
  122. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789CrossRefGoogle Scholar
  123. Skold EM, Thyne GD, Drexler JW, McCray JE (2007) Determining conditional stability constants for Pb complexation by carboxymethyl-β-cyclodextrin (CMCD). J Contam Hydrol 93(1–4):203–215CrossRefGoogle Scholar
  124. Skold EM, Thyne GD, Drexler JW, McCray JE (2009) Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD). J Contam Hydrol 107(3–4):108–113CrossRefGoogle Scholar
  125. Springael D, Diels L, Hooyberghs L, Kreps S, Mergeay M (1993) Construction and characterization of heavy metal-resistant haloaromatic-degrading Alcaligenes eutrophus Strains. Appl Environ Microbiol 59(1):334–339Google Scholar
  126. Srivastava S, Suprasanna P, D’Souza SF (2012) Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal. Int J Phytoremediation 14(5):506–517CrossRefGoogle Scholar
  127. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18(2):321–336CrossRefGoogle Scholar
  128. Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99(14):6017–6027CrossRefGoogle Scholar
  129. Surchi KMS (2011) Agricultural wastes as low cost adsorbents for Pb removal: kinetics, equilibrium and thermodynamics. Int J Chem 3(3):103–112Google Scholar
  130. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011. Article ID 939161Google Scholar
  131. Tick GR, Lourenso F, Lynnwood A, Brusseau ML (2003) Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for remediation of a tetrachloroethene-contaminated aquifer. Environ Sci Technol 37(24):5829–5834CrossRefGoogle Scholar
  132. Truex MJ, Vermeul VR, Mendoza DP, Fritz BG, Mackley RD, Oostrom M, Wietsma TW, Macbeth TW (2011) Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids. Ground Water Monit. Remediat. 31(1):50–58CrossRefGoogle Scholar
  133. Tsutomu S, Kobayashi Y (1998) The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol 180(7):1655–1661Google Scholar
  134. Turner RJ, Aharonowitz Y, Weiner J, Taylor DE (2001) Glutathione is a target of tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47(1):33–40Google Scholar
  135. US Department of Defense (2004) Cyclodextrin-enhanced in situ removal of organic contaminants from groundwater at department of defense sites. Environmental Security Technology Certification ProgramGoogle Scholar
  136. Uysal A, Turkman A (2005) Effect of biosurfactant on 2,4-dichlorophenol biodegradation in an activated sludge bioreactor. Process Biochem 40(8):2745–2749CrossRefGoogle Scholar
  137. Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776CrossRefGoogle Scholar
  138. Vasudevan P, Padmavathy V, Dhingra SC (2003) Kinetics of biosorption of cadmium on Baker’s yeast. Bioresour Technol 89(3):281–287CrossRefGoogle Scholar
  139. Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42(5):797–806CrossRefGoogle Scholar
  140. Wan C, Chen YH, Wei R (1998) Dechlorination of chloromethanes on iron and palladium-iron bimetallic surface in aqueous systems. Environ Toxicol Chem 18(6):1091–1096CrossRefGoogle Scholar
  141. Wang X, Brusseau ML (1995) Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environ Sci Technol 29(10):2632–2635CrossRefGoogle Scholar
  142. Wang Y, Zhou D, Wang Y, Zhu X, Jin S (2011a) Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron. J Environ Sci 23(8):1286–1292CrossRefGoogle Scholar
  143. Wang C, Ma X, Walsh MP (2011b) Competitive uptake and phytomonitoring of chlorinated contaminant mixtures by Redosier Dogwood (Cornus sericea). Int J Phytoremediation 13(4):333–344CrossRefGoogle Scholar
  144. Wanga G, Zhoua Y, Wanga X, Chaia X, Huanga L, Dengb N (2010) Simultaneous removal of phenanthrene and lead from artificially contaminated soils with glycine- β- cyclodextrin. J Hazard Mater 184(1–3):690–695CrossRefGoogle Scholar
  145. Wireman J, Liebert CA, Smith T, Summers OA (1997) Population biology of the mercury resistance (mer) operon in the facultative Gram negative enteric flora of humans and other primates. Appl Environ Microbiol 63:4494–4503Google Scholar
  146. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780CrossRefGoogle Scholar
  147. Worden CR (2008) Effect of pH on cadmium toxicity and Associated gene expression in Escherichia coli. Masters thesis. The University of Wisconsin Oshkosh, OshkoshGoogle Scholar
  148. Wu L, Li Z, Han C, Liu L, Teng Y, Sun X, Pan C, Huang Y, Luo Y, Christie P (2012) Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls. Int. J. Phytoremediation. 14(6):570–584CrossRefGoogle Scholar
  149. Yang C, Zeng Q, Wang Y, Liao B, Sun J, Shi H, Chen X (2010) Simultaneous elution of polycyclic aromatic hydrocarbons and heavy metals from contaminated soil by two amino acids derived from β-cyclodextrins. J Environ Sci 22(12):1910–1915CrossRefGoogle Scholar
  150. Zannoni D, Borsetti F, Harrison JJ, Turner RJ (2007) The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol 53:1–71CrossRefGoogle Scholar

Copyright information

© CEERS, IAU 2012

Authors and Affiliations

  1. 1.Discipline of Microbiology, School of Life SciencesUniversity of KwaZulu-Natal (Westville Campus)DurbanRepublic of South Africa

Personalised recommendations