Electrochemical oxidation of succinic acid in aqueous solutions using boron doped diamond anodes

Original Paper

Abstract

In this work, the electrochemical oxidation of succinic acid on boron-doped diamond (BDD) anodes was investigated. Voltammetric study had shown that no peaks appeared in the region of electrolyte stability which indicates that succinic acid oxidation can take place at a potential close to the potential region of electrolyte oxidation. Galvanostatic electrolyses achieved total chemical oxygen demand (COD) removals and high mineralization yields under different operating conditions (initial COD, current density and nature of supporting electrolyte). Oxalic, glycolic and formic acids were the main intermediates detected during anodic oxidation of succinic acid on BDD electrode and carbon dioxide as the final product. The mean oxidation state of carbon reached the value of 4 at the end of electrolysis which is indicative of mineralization of almost all organics present in aqueous solution. The exponential profile of COD versus specific electrical charge has shown that mass transfer is the limiting factor for the kinetics of electrochemical process. A simple mechanism was proposed for the mineralization of succinic acid. First, hydroxyl radicals attack of succinic acid leading to formation of glycolic, glyoxylic, fumaric and maleic acids. Then, theses acids undergo rapid and non-selective oxidation by hydroxyl radicals to be transformed into oxalic and formic acids which leads to further oxidation steps to mineralize these acids into carbon dioxide and water.

Keywords

Anodic oxidation Carboxylic acids Chemical oxygen demand Hydroxyl radicals Mineralization Total organic carbon 

References

  1. Ahmadi MF, Bensalah N, Gadri A (2007) Electrochemical degradation of anthraquinone dye Alizarin Red S by anodic oxidation on boron-doped diamond. Dyes Pigments 73(1):86–89CrossRefGoogle Scholar
  2. Bensalah N, Gadri A (2005) Electrochemical oxidation of 2,4,6-trinitrophenol on boron-doped diamond electrodes. J Electrochem Soc 152(6):D113–D116CrossRefGoogle Scholar
  3. Bensalah N, Gadri A, Cañizares P, Sáez C, Lobato J, Rodrigo MA (2005) Electrochemical oxidation of hydroquinone, resorcinol, and cathecol on boron-doped diamond anodes. Environ Sci Tec 39(18):7234–7239CrossRefGoogle Scholar
  4. Bensalah N, Trabelsi H, Gadri A (2009) Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation. J Environ Manag 90(1):523–530CrossRefGoogle Scholar
  5. Boye B, Brillas E, Marselli B, Michaud PA, Comninellis Ch, Farnia G, Sandona G (2006) Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode. Electrochim Acta 51(14):2872–2880CrossRefGoogle Scholar
  6. Brillas E, Boye B, Sirés I, Garrido JA, Rodríguez RM, Arias C, Cabot PL, Comninellis Ch (2004) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim Acta 49(25):4487–4496CrossRefGoogle Scholar
  7. Brillas E, Banos MA, Skoumal M, Cabot PL, Garrido JA, Rodriguez RM (2007) Degradation of the herbicide 2, 4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes. Chemosphere 68(2):199–209CrossRefGoogle Scholar
  8. Butron E, Juarez ME, Solis M, Teutli M, Gonzalez I, Nava JL (2007) Electrochemical incineration of indigo textile dye in filter-press-type FM01-LC electrochemical cell using BDD electrodes. Electrochim Acta 52(24):6888–6894CrossRefGoogle Scholar
  9. Canizares P, Garcia-Gomez J, Lobato J, Rodrigo MA (2003) Electrochemical oxidation of aqueous carboxylic acid wastes using diamond thin-film electrodes. Ind Eng Chem Res 42(5):956–962CrossRefGoogle Scholar
  10. Canizares P, Saez C, Lobato J, Rodrigo MA (2004) Electrochemical oxidation of polyhydroxybenzenes on boron-doped diamond anodes. Ind Eng Chem Res 43(21):6629–6637CrossRefGoogle Scholar
  11. Canizares P, Lobato J, Paz R, Rodrigo MA, Saez C (2005a) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res 39(12):2687–2703CrossRefGoogle Scholar
  12. Canizares P, Larrondo F, Lobato J, Rodrigo MA, Saez C (2005b) Electrochemical synthesis of peroxodiphosphate using Boron-Doped Diamond anodes. J Electrochem Soc 152(11):D191–D196CrossRefGoogle Scholar
  13. Canizares P, Gadri A, Lobato J, Bensalah N, Rodrigo MA, Saez C (2006a) Electrochemical oxidation of Azoic Dyes with Conductive-Diamond Anodes. Ind Eng Chem Res 45(10):3468–3473Google Scholar
  14. Canizares P, Martinez L, Paz R, Saez C, Lobato J, Rodrigo MA (2006b) Treatment of Fenton-refractory olive-oil-mills wastes by electrochemical oxidation with Boron Doped Diamond Anodes. J Chem Technol Biotech 81(8):1331–1337Google Scholar
  15. Canizares P, Louhichi B, Gadri A, Bensalah N, Paz R, Rodrigo MA, Saez C (2007) Electrochemical treatment of the pollutants generated in an ink-manufacturing process. J Hazard Mater 146(3):552–557CrossRefGoogle Scholar
  16. Canizares P, Paz R, Saez C, Rodrigo MA (2008) Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes: A comparison with other advanced oxidation processes. Electrochim Acta 53(5):2144–2153CrossRefGoogle Scholar
  17. Carter KE, Farrell J (2008) Oxidative Destruction of Perfluorooctane sulfonate using boron-doped diamond film electrodes. Environ Sci Tech 42(16):6111–6115CrossRefGoogle Scholar
  18. Chailapakul O, Popa E, Tai H, Sarada BV, Tryk DA, Fujishima A (2000) The electrooxidation of organic acids at boron-doped diamond electrodes. Electrochem Comm 2(6):422–426CrossRefGoogle Scholar
  19. Chen X, Chen G (2006) Anodic oxidation of Orange II on Ti/BDD electrode: Variable effects. Sep Pur Technol 48(1):45–49CrossRefGoogle Scholar
  20. Drogui P, Blais JF, Mercier G (2007) Review of electrochemical technologies for environmental applications. Recent patents on engineering 1:257CrossRefGoogle Scholar
  21. Fernandes A, Morao A, Magrinho M, Lopes A, Goncales I (2004) Electrochemical degradation of C.I. acid Orange 7. Dyes and Pigments 61(3):287–296CrossRefGoogle Scholar
  22. Franch MI, Ayllon JA, Peral J, Domenech X (2002) Photocatalytic degradation of short-chain organic diacids. Catalysis Today 76(2–4):221–233CrossRefGoogle Scholar
  23. Gandini D, Mahe E, Michaud PA, Haenni W, Perret A, Comninellis Ch (2000) Oxidation of carboxylic acid at boron-doped diamond electrodes. J Appl Electrochem 30(12):1345–1350CrossRefGoogle Scholar
  24. Hagans PL, Natishan PM, Stoner BR, O’Grady WE (2001) Electrochemical oxidation of phenol using boron-doped diamond electrodes. J Electrochem Soc 148(7):E298–E301CrossRefGoogle Scholar
  25. Iniesta J, Michaud PA, Panizza M, Cerisola G, Aldaz A, Comninellis Ch (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46(23):3573–3578CrossRefGoogle Scholar
  26. Ivandini TA, Rao TN, Fujishima A, Einaga Y (2006) Electrochemical oxidation of oxalic acid at highly Boron-Doped Diamond electrodes. Anal Chem 78(10):3467–3471CrossRefGoogle Scholar
  27. Kapalka A, Foti G, Comninellis Ch (2008a) Kinetic modeling of the electrochemical mineralization of organic pollutants for wastewater treatment. J Appl Electrochem 38(1):7–16CrossRefGoogle Scholar
  28. Kapalka A, Lanova B, Baltruschat H, Foti G, Comninellis Ch (2008b) Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochem. Comm 10(9):1215–1218CrossRefGoogle Scholar
  29. Kapalka A, Lanova B, Baltruschat H, Foti G, Comninellis Ch (2008c) DEMS Study of the acetic acid oxidation on Boron-Doped Diamond electrode. J Electrochem Soc 155:E96–E100CrossRefGoogle Scholar
  30. Kraft A (2007) Doped Diamond: a compact review on a new versatile electrode material. IntJ Electrochem Sci 2(5):355–385Google Scholar
  31. Louhichi B, Bensalash N, Gadri A (2006) Electrochemical oxidation of benzoic acid derivatives on Boron Doped Diamond: voltammetric study and galvanostatic electrolyses. Chem Eng Tech 29(8):944–950CrossRefGoogle Scholar
  32. Louhichi B, Ahmadi MF, Bensalah N, Gadri A, Rodrigo MA (2008a) Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes. J Hazard Mater 158(2–3):430–437CrossRefGoogle Scholar
  33. Louhichi B, Bensalah N, Gadri A (2008b) Electrochemical oxidation of glycols on boron-doped diamond anode. J Environ Eng Manage 18(3):231–237Google Scholar
  34. Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis Ch (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150(3):D79–D83CrossRefGoogle Scholar
  35. Martinez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B: Environ 87(3–4):105–145CrossRefGoogle Scholar
  36. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340CrossRefGoogle Scholar
  37. Martinez-Huitle CA, Ferro S, Reyna S, Cerro-Lopez M, De Battisti A, Quiroz MA (2008) Electrochemical oxidation of oxalic acid in the presence of halides at Boron Doped Diamond electrode. J Braz Chem Soc 19(1):150–156CrossRefGoogle Scholar
  38. Michaud PA, Mahe E, Haenni W, Perret A, Comninellis Ch (2000) Preparation of peroxodisulfuric acid using boron-doped diamond thin-film Electrodes. Electrochem Solid State Lett 3(2):77–79CrossRefGoogle Scholar
  39. Michaud PA, Panizza M, Ouattara L, Diaco T, Foti G, Comninellis Ch (2003) Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. App Electrochem 33(2):151–154CrossRefGoogle Scholar
  40. Montilla F, Michaud MA, Morallon E, Vazquez JL, Comninellis Ch (2002) Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochim Acta 47(21):3509–3513CrossRefGoogle Scholar
  41. Onofrio S, Alessandro G, Chiara G, Serena R, Giuseppe F (2008) Electrochemical incineration of oxalic acid at boron doped diamond anodes: role of operative parameters. Electrochim Acta 53(5):2095–2108CrossRefGoogle Scholar
  42. Pacheco MJ, Morao A, Lopes A, Ciriaco L, Goncalves I (2007) Degradation of phenols using boron-doped diamond electrodes: a method for quantifying the extent of combustion. Electrochim Acta 53(2):629–636CrossRefGoogle Scholar
  43. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569CrossRefGoogle Scholar
  44. Panizza M, Michaud PA, Iniesta J, Comninellis Ch, Cerisola G (2002) Electrochemical oxidation of phenol at boron-doped diamond electrode: application to electro-organic synthesis and wastewater treatment. Ann Chim 92(10):995–1006Google Scholar
  45. Prabhakaran D, Kannadasan T, Ahmed Basha C (2009) Treatability of resin effluents by electrochemical oxidation using batch recirculation reactor. Int. J. Environ. Sci. Tech 6(3):491–498Google Scholar
  46. Quiroz Alfaro MA, Ferro S, Martinez-Huitle CA, Vong YM (2006) Boron doped diamond electrode for the wastewater treatment. J Braz Chem Soc 17(2):227–236CrossRefGoogle Scholar
  47. Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Ch Comninellis (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrodes for wastewater treatment. J Electrochem Soc 148(5):D60–D64CrossRefGoogle Scholar
  48. Rodrigo MA, Canizares P, Sanchez-Carretero A, Saez C (2010) Use of conductive-diamond electrochemical oxidation for water treatment. Catalysis Today 151(1–2):173–177CrossRefGoogle Scholar
  49. Rup S, Zimmermann F, Meux E, Schneider M, Sindt M, Oget N (2009) The ultrasound-assisted oxidative scission of monoenic fatty acids by ruthenium tetroxide catalysis: Influence of the mixture of solvents. Ultrasonics Sonochem 16(2):266–272CrossRefGoogle Scholar
  50. Saez C, Panizza M, Rodrigo MA, Cerisola G (2007) Electrochemical incineration of dyes using a boron-doped diamond anode. J Chem Technol Biotech 82(6):575–581CrossRefGoogle Scholar
  51. Sires I, Cabot PL, Centellas F, Garrido JA, Rodriguez RM, Arias C, Brillas E (2006) Electrochemical degradation of clofibric acid in water by anodic oxidation: comparative study with platinum and boron-doped diamond electrodes. Electrochim Acta 52(1):75–85CrossRefGoogle Scholar
  52. Vogel F, Harf J, Hug A, Von Rohr PR (2000) The mean oxidation number of carbon (MOC)- A useful concept for describing oxidation processes. Water Res 34(10):2689–2702CrossRefGoogle Scholar
  53. Weiss E, Groenen-Serrano K, Savall A (2008) A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes. J Appl Electrochem 38(3):329–337CrossRefGoogle Scholar
  54. Yavuz Y, Koparal AS, Outveren UB (2008) Phenol degradation in a bipolar trickle tower reactor using boron-doped diamond electrode. J Environ Eng 134:24–31CrossRefGoogle Scholar

Copyright information

© CEERS, IAU 2011

Authors and Affiliations

  1. 1.Texas A&M University at QatarDohaQatar
  2. 2.Department of Chemistry, Faculty of Sciences of GabesUniversity of GabesGabesTunisia

Personalised recommendations