Advertisement

Altered plasma visfatin levels and insulin resistance in patients with Alzheimer’s disease

  • Ehsan Sharifipour
  • Soroush Sharifimoghadam
  • Navid Hassanzadeh
  • Negin Ghasemian Mojarad
  • Abdoreza Ghoreishi
  • Seyyed Amir Hejazi
  • Kambiz RohampourEmail author
Original article
  • 17 Downloads

Abstract

Central insulin resistance is involved in the pathophysiology of Alzheimer’s disease (AD). Visfatin (VIS), an adipokine secreted from peripheral adipose tissue, is involved in energy balance and weight control. Besides its metabolic roles, VIS possesses insulin-mimetic, anti-apoptotic, and neuroprotective properties. In this study, we assessed the presence of a correlation between plasma VIS level and insulin resistance or AD. Sixty participants were enrolled in this study; 34 patients with AD and 26 healthy subjects. All subjects underwent comprehensive evaluations including Mini-mental score exam (MMSE) for the diagnosis of dementia. Subjects with MMSE score < 24 were added to the AD group, while healthy subjects should have a MMSE score > 27. Fasting blood sugar (FBS) and insulin levels were measured by enzyme-linked immunosorbent assay. The results indicate a significant elevation in FBS from 103 ± 3.0 to 147 ± 7.6 in AD patients (p ≤ 0.001). Additionally, 71% of AD patients developed insulin resistance, as the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index increased from 2.9 ± 0.5 in healthy subjects to 5.2 ± 0.7 in AD patients (p ≤ 0.05). Body mass index and serum insulin level did not show a significant alteration, but serum VIS levels were significantly (p ≤ 0.01) lower in AD patients (11.15 ± 1.9 ng/ml) in comparison to control group (21.09 ± 2.3 ng/ml). There is a negative correlation between plasma VIS level and the HOMA-IR index (p < 0.05). The results of this study present clear evidence for systemic insulin resistance and decreased serum VIS level in non-obese, non-overweight patients with moderate to severe AD.

Keywords

Visfatin Alzheimer disease Insulin resistance Dementia 

Notes

Acknowledgements

This study was supported by a grant from Qom University of Medical Sciences (Grant number 94579) in/ Qom, Iran.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest for any of the contributing authors. The authors alone are responsible for the content and writing of the paper.

Ethical approval

All procedures in this study were in accordance to the ethical principles and the national norms and standards for conducting Medical Research in Iran, which is based on ethical standards of Helsinki declaration. The proposal of this study has been approved by the research ethics committee (approval ID: IR.MUQ.Rec.1394.100), meeting the professional and legal requirements is the sole responsibility of the PI and other project collaborators.

Informed consent

Informed consent was obtained from all participants.

Supplementary material

13760_2019_1084_MOESM1_ESM.xlsx (38 kb)
Supplementary material 1 (XLSX 38 KB)

References

  1. 1.
    Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:b158CrossRefGoogle Scholar
  2. 2.
    Li J, Cesari M, Liu F, Dong B, Vellas B (2017) Effects of diabetes mellitus on cognitive decline in patients with Alzheimer disease: a systematic review. Can J Diabetes 41(1):114–119.  https://doi.org/10.1016/j.jcjd.2016.07.003 CrossRefGoogle Scholar
  3. 3.
    Schrijvers EM, Witteman JC, Sijbrands EJ, Hofman A, Koudstaal PJ, Breteler MM (2010) Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology 75(22):1982–1987.  https://doi.org/10.1212/WNL.0b013e3181ffe4f6 CrossRefGoogle Scholar
  4. 4.
    Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275(5300):661–665CrossRefGoogle Scholar
  5. 5.
    Willette AA, Bendlin BB, Starks EJ, Birdsill AC, Johnson SC, Christian BT, Okonkwo OC, La Rue A, Hermann BP, Koscik RL, Jonaitis EM, Sager MA, Asthana S (2015) Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer disease. JAMA Neurol 72(9):1013–1020.  https://doi.org/10.1001/jamaneurol.2015.0613 CrossRefGoogle Scholar
  6. 6.
    Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23(18):7084–7092CrossRefGoogle Scholar
  7. 7.
    de la Monte SM (2009) Insulin resistance and Alzheimer’s disease. BMB Rep 42(8):475–481CrossRefGoogle Scholar
  8. 8.
    Arnoldussen IA, Kiliaan AJ, Gustafson DR (2014) Obesity and dementia: adipokines interact with the brain. Eur Neuropsychopharmacol 24(12):1982–1999.  https://doi.org/10.1016/j.euroneuro.2014.03.002 CrossRefGoogle Scholar
  9. 9.
    Kiliaan AJ, Arnoldussen IA, Gustafson DR (2014) Adipokines: a link between obesity and dementia? Lancet Neurol 13(9):913–923.  https://doi.org/10.1016/S1474-4422(14)70085-7 CrossRefGoogle Scholar
  10. 10.
    Balistreri CR, Caruso C, Candore G (2010) The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediat Inflamm 2010:802078.  https://doi.org/10.1155/2010/802078 CrossRefGoogle Scholar
  11. 11.
    Holden KF, Lindquist K, Tylavsky FA, Rosano C, Harris TB, Yaffe K, study HA (2009) Serum leptin level and cognition in the elderly: findings from the Health ABC Study. Neurobiol Aging 30(9):1483–1489.  https://doi.org/10.1016/j.neurobiolaging.2007.11.024 CrossRefGoogle Scholar
  12. 12.
    Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307(5708):426–430.  https://doi.org/10.1126/science.1097243 CrossRefGoogle Scholar
  13. 13.
    Tu TH, Nam-Goong IS, Lee J, Yang S, Kim JG (2017) Visfatin triggers anorexia and body weight loss through regulating the inflammatory response in the hypothalamic microglia. Mediat Inflamm 2017:1958947.  https://doi.org/10.1155/2017/1958947 CrossRefGoogle Scholar
  14. 14.
    Erfani S, Khaksari M, Oryan S, Shamsaei N, Aboutaleb N, Nikbakht F (2015) Nampt/PBEF/visfatin exerts neuroprotective effects against ischemia/reperfusion injury via modulation of Bax/Bcl-2 ratio and prevention of caspase-3 activation. J Mol Neurosci 56(1):237–243.  https://doi.org/10.1007/s12031-014-0486-1 CrossRefGoogle Scholar
  15. 15.
    Wang P, Xu TY, Guan YF, Tian WW, Viollet B, Rui YC, Zhai QW, Su DF, Miao CY (2011) Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann Neurol 69(2):360–374.  https://doi.org/10.1002/ana.22236 CrossRefGoogle Scholar
  16. 16.
    Skop V, Kontrová K, Zídek V, Pravenec M, Kazdová L, Mikulík K, Sajdok J, Zídková J (2010) Autocrine effects of visfatin on hepatocyte sensitivity to insulin action. Physiol Res 59(4):615–618Google Scholar
  17. 17.
    Jack CR, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):257–262.  https://doi.org/10.1016/j.jalz.2011.03.004 CrossRefGoogle Scholar
  18. 18.
    Une K, Takei YA, Tomita N, Asamura T, Ohrui T, Furukawa K, Arai H (2011) Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur J Neurol 18(7):1006–1009.  https://doi.org/10.1111/j.1468-1331.2010.03194.x CrossRefGoogle Scholar
  19. 19.
    Hermans MP, Levy JC, Morris RJ, Turner RC (1999) Comparison of insulin sensitivity tests across a range of glucose tolerance from normal to diabetes. Diabetologia 42(6):678–687.  https://doi.org/10.1007/s001250051215 CrossRefGoogle Scholar
  20. 20.
    De Felice FG, Lourenco MV, Ferreira ST (2014) How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement 10(1 Suppl):S26–S32.  https://doi.org/10.1016/j.jalz.2013.12.004 CrossRefGoogle Scholar
  21. 21.
    Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Investig 112(12):1785–1788.  https://doi.org/10.1172/JCI20514 CrossRefGoogle Scholar
  22. 22.
    Kitagawa K, Miwa K, Okazaki S, Sakaguchi M, Mochizuki H (2016) Serum high-molecular-weight adiponectin level and incident dementia in patients with vascular risk factors. Eur J Neurol 23(3):641–647.  https://doi.org/10.1111/ene.12915 CrossRefGoogle Scholar
  23. 23.
    Teixeira AL, Diniz BS, Campos AC, Miranda AS, Rocha NP, Talib LL, Gattaz WF, Forlenza OV (2013) Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. Neuromolecular Med 15(1):115–121.  https://doi.org/10.1007/s12017-012-8201-2 CrossRefGoogle Scholar
  24. 24.
    Bednarska-Makaruk M, Graban A, Wiśniewska A, Łojkowska W, Bochyńska A, Gugała-Iwaniuk M, Sławińska K, Ługowska A, Ryglewicz D, Wehr H (2017) Association of adiponectin, leptin and resistin with inflammatory markers and obesity in dementia. Biogerontology 18(4):561–580.  https://doi.org/10.1007/s10522-017-9701-0 CrossRefGoogle Scholar
  25. 25.
    Gorospe EC, Dave JK (2007) The risk of dementia with increased body mass index. Age Ageing 36(1):23–29.  https://doi.org/10.1093/ageing/afl123 CrossRefGoogle Scholar
  26. 26.
    Owczarek AJ, Olszanecka-Glinianowicz M, Kocełak P, Bożentowicz-Wikarek M, Brzozowska A, Mossakowska M, Puzianowska-Kuźnicka M, Grodzicki T, Więcek A, Chudek J (2016) The relationship between circulating visfatin/nicotinamide phosphoribosyltransferase, obesity, inflammation and lipids profile in elderly population, determined by structural equation modeling. Scand J Clin Lab Investig 76(8):632–640.  https://doi.org/10.1080/00365513.2016.1230884 CrossRefGoogle Scholar
  27. 27.
    Tabassum A, Mahboob T (2018) Role of peroxisome proliferator-activated receptor-gamma activation on visfatin, advanced glycation end products, and renal oxidative stress in obesity-induced type 2 diabetes mellitus. Hum Exp Toxicol.  https://doi.org/10.1177/0960327118757588 Google Scholar
  28. 28.
    Liang Z, Wu Y, Xu J, Fang Q, Chen D (2016) Correlations of serum visfatin and metabolisms of glucose and lipid in women with gestational diabetes mellitus. J Diabetes Investig 7(2):247–252.  https://doi.org/10.1111/jdi.12385 CrossRefGoogle Scholar
  29. 29.
    Kazem YM, Shebini SM, Moaty MI, Fouad S, Tapozada ST (2015) Sleep deficiency is a modifiable risk factor for obesity and cognitive impairment and associated with elevated visfatin. Open Access Maced J Med Sci 3(2):315–321.  https://doi.org/10.3889/oamjms.2015.063 CrossRefGoogle Scholar
  30. 30.
    Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin JJ, van Duijn C, Peeters K, Sciot R, Santens P, De Pooter T, Mattheijssens M, Van den Broeck M, Cuijt I, Vennekens K, De Deyn PP, Kumar-Singh S, Van Broeckhoven C (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924.  https://doi.org/10.1038/nature05017 CrossRefGoogle Scholar
  31. 31.
    Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S, Cannon A, Dwosh E, Neary D, Melquist S, Richardson A, Dickson D, Berger Z, Eriksen J, Robinson T, Zehr C, Dickey CA, Crook R, McGowan E, Mann D, Boeve B, Feldman H, Hutton M (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919.  https://doi.org/10.1038/nature05016 CrossRefGoogle Scholar
  32. 32.
    Lu YC, Hsu CC, Yu TH, Wang CP, Lu LF, Hung WC, Chiu CA, Chung FM, Lee YJ, Tsai IT (2013) Association between visfatin levels and coronary artery disease in patients with chronic kidney disease. Iran J Kidney Dis 7(6):446–452Google Scholar
  33. 33.
    Mazrooie R, Rohampour K, Zamani M, Hosseinmardi N, Zeraati M (2017) Intracerebroventricular administration of adiponectin attenuates streptozotocin-induced memory impairment in rats. Physiol Int 104(2):150–157.  https://doi.org/10.1556/2060.104.2017.1.4 CrossRefGoogle Scholar
  34. 34.
    Pousti F, Ahmadi R, Mirahmadi F, Hosseinmardi N, Rohampour K (2018) Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus. Neurosci Lett 662:227–232.  https://doi.org/10.1016/j.neulet.2017.10.042 CrossRefGoogle Scholar
  35. 35.
    Kang YS, Bae MK, Kim JY, Jeong JW, Yun I, Jang HO, Bae SK (2011) Visfatin induces neurite outgrowth in PC12 cells via ERK1/2 signaling pathway. Neurosci Lett 504(2):121–126.  https://doi.org/10.1016/j.neulet.2011.09.014 CrossRefGoogle Scholar
  36. 36.
    Zhang W, Xie Y, Wang T, Bi J, Li H, Zhang LQ, Ye SQ, Ding S (2010) Neuronal protective role of PBEF in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 30(12):1962–1971.  https://doi.org/10.1038/jcbfm.2010.71 CrossRefGoogle Scholar

Copyright information

© Belgian Neurological Society 2019

Authors and Affiliations

  1. 1.Neurology and Neuroscience Research CenterQom University of Medical SciencesQomIran
  2. 2.Student Research CommitteeQom University of Medical SciencesQomIran
  3. 3.Department of Neurology, Vali-e-asr Hospital, School of MedicineZanjan University of Medical SciencesZanjanIran

Personalised recommendations