Advertisement

Artery/vein classification of retinal vessels using classifiers fusion

  • Xiao-Xia YinEmail author
  • Samra Irshad
  • Yanchun Zhang
Research
  • 1 Downloads

Abstract

The morphological changes in retinal blood vessels indicate cardiovascular diseases and consequently those diseases lead to ocular complications such as Hypertensive Retinopathy. One of the significant clinical findings related to this ocular abnormality is alteration of width of vessel. The classification of retinal vessels into arteries and veins in eye fundus images is a relevant task for the automatic assessment of vascular changes. This paper presents an important approach to solve this problem by means of feature ranking strategies and multiple classifiers decision-combination scheme that is specifically adapted for artery/vein classification. For this, three databases are used with a local dataset of 44 images and two publically available databases, INSPIRE-AVR containing 40 images and VICAVR containing 58 images. The local database also contains images with pathologically diseased structures. The performance of the proposed system is assessed by comparing the experimental results with the gold standard estimations as well as with the results of previous methodologies, achieving promising classification performance, with an over all accuracy of 90.45%, 93.90% and 87.82%, in retinal blood vessel separation for Local, INSPIRE-AVR and VICAVR dataset, respectively.

Keywords

Hypertensive retinopathy Retinal vessel classification Optic disk Region of analysis SVMs 

Notes

Acknowledgements

The author would like to thank Dr. Umer Salman from Hameed Latif Hospital, Lahore, Pakistan for assisting in providing ground truth for retinal vessel classification.

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    Aibinu AM, Iqbal MI, Shafie AA, Salami MJE, Nilsson M. Vascular intersection detection in retina fundus images using a new hybrid approach. Comput Biol Med. 2010;40(1):81–9.CrossRefGoogle Scholar
  2. 2.
    Azzopardi G, Petkov N. Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters. Pattern Recogn Lett. 2013;34(8):922–33.CrossRefGoogle Scholar
  3. 3.
    Beheshti I, Demirel H, Farokhian F, Yang C, Matsuda H, Initiative Alzheimer’s Disease Neuroimaging. Structural MRI-based detection of Alzheimer’s disease using feature ranking and classification error. Comput Methods Programs Biomed. 2016;137:177–93.CrossRefGoogle Scholar
  4. 4.
    Bhuiyan A, Hussain MdA, Wong Y, Klein TR. Retinal artery and vein classification for automatic vessel caliber grading. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society. 2018. pp. 870–873.  https://doi.org/10.1109/embc.2018.8512287.
  5. 5.
    Dashtbozorg B, Mendonça AM, Campilho A. An automatic method for the estimation of arteriolar-to-venular ratio in retinal images. In: 26th international symposium on computer-based medical systems (CBMS). 2013. pp. 512–513. IEEE.Google Scholar
  6. 6.
    Devi SS, Roy A, Singha J, Sheikh SA, Laskar RH. Malaria infected erythrocyte classification based on a hybrid classifier using microscopic images of thin blood smear. Multimed Tools Appl. 2016;77:631.CrossRefGoogle Scholar
  7. 7.
    Dimitrovski I, Kocev D, Kitanovski I, Loskovska S, Džeroski S. Improved medical image modality classification using a combination of visual and textual features. Comput Med Imaging Graph. 2015;39:14–26.CrossRefGoogle Scholar
  8. 8.
    Douze M, Ramisa A, Schmid C. Combining attributes and fisher vectors for efficient image retrieval. In: Computer vision and pattern recognition CVPR. 2011. pp. 745–752. IEEE.Google Scholar
  9. 9.
    Du P, Zhang W, Sun H. Multiple classifier combination for hyperspectral remote sensing image classification. Multiple classifier systems. Berlin: Springer; 2009. p. 52–61.CrossRefGoogle Scholar
  10. 10.
    Estrada R, Allingham MJ, Mettu PS, Cousins SW, Tomasi C, Farsiu S. Retinal artery-vein classification via topology estimation. IEEE Trans Med Imaging. 2015;34(12):2518–34.CrossRefGoogle Scholar
  11. 11.
    Fakhraei S, Soltanian-Zadeh H, Fotouhi F. Bias and stability of single variable classifiers for feature ranking and selection. Expert Syst Appl. 2014;41(15):6945–58.CrossRefGoogle Scholar
  12. 12.
    Fraz MM, Rudnicka AR, Owen CG, Strachan DP, Barman SA. Automated arteriole and venule recognition in retinal images using ensemble classification. In: International conference on computer vision theory and applications VISAPP. 2014. pp. 194–202. IEEE.Google Scholar
  13. 13.
    Geusebroek JM, Smeulders AW, Van De Weijer J. Fast anisotropic gauss filtering. IEEE Trans Image Process. 2003;12(8):938–43.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grisan E, Ruggeri A. A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In: Proceedings of the 25th annual international conference of the IEEE Engineering in Medicine and Biology Society. 2003. pp. 890–893.Google Scholar
  15. 15.
    Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS, Sharrett AR, Davis MD, Cai J, Atherosclerosis Risk in Communities Study Group. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology. 1999;106(12):2269–80.CrossRefGoogle Scholar
  16. 16.
    Irshad S, Yin X, Li LQ, Salman U. Automatic optic disk segmentation in presence of disk blurring. International Symposium on Visual Computing. Berlin: Springer; 2016. p. 13–23.Google Scholar
  17. 17.
    Jamal I, Akram MU, Tariq A. Retinal image preprocessing: background and noise segmentation. TELKOMNIKA. 2012;10(3):537–44.CrossRefGoogle Scholar
  18. 18.
    Kendall MG, Gibbons JD. Rank correlation methods. 5th ed. New York: Oxford University Press; 1990.zbMATHGoogle Scholar
  19. 19.
    Knudtson MC, Lee KE, Hubbard LD, Wong TY, Klein R, Klein BEK. Revised formulas for summarizing retinal vessel diameters. Curr Eye Res. 2003;27(3):143–9.CrossRefGoogle Scholar
  20. 20.
    Kononenko I. Estimating attributes: analysis and extensions of RELIEF. European conference on machine learning. Berlin: Springer; 1994. p. 171–82.Google Scholar
  21. 21.
    Lee TS. Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell. 1996;18(10):959–71.CrossRefGoogle Scholar
  22. 22.
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.CrossRefGoogle Scholar
  23. 23.
    Leung T, Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vision. 2001;43(1):29–44.CrossRefGoogle Scholar
  24. 24.
    Liu M, Zhang D, Shen D. Hierarchical fusion of features and classifier decisions for Alzheimer’s disease diagnosis. Hum Brain Mapp. 2014;35(4):1305–19.CrossRefGoogle Scholar
  25. 25.
    Liu Z-F, Zhang Y-Zh, Liu P-Zh, Zhang Y, Luo Y-M, Du Y-Zh, Peng Y. Retinal vessel segmentation using densely connected convolution neural network with colorful fundus images. J Med Imaging Health Inf. 2018;8(6):1300–7.CrossRefGoogle Scholar
  26. 26.
    Mirsharif Q, Tajeripour F, Pourreza H. Automated characterization of blood vessels as arteries and veins in retinal images. Comput Med Imaging Graph. 2013;37(7):607–17.CrossRefGoogle Scholar
  27. 27.
    Niemeijer M, Xu X, Dumitrescu AV, Gupta P, van Ginneken B, Folk JC, Abramoff MD. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans Med Imaging. 2011;30(11):1941–50.CrossRefGoogle Scholar
  28. 28.
    Niu G, Han T, Yang BS, Tan ACC. Multi-agent decision fusion for motor fault diagnosis. Mech Syst Signal Process. 2007;21(3):1285–99.CrossRefGoogle Scholar
  29. 29.
    Ortíz D, Cubides M, Suárez A, Zequera M, Quiroga J, Gómez J, Arroyo N. Support system for the preventive diagnosis of hypertensive retinopathy. In: 37th annual international conference of the IEEE Engineering in Medicine and Biology Society EMBC. 2010. pp. 5649–5652. IEEE.Google Scholar
  30. 30.
    Pandey D, Yin X, Wang H, Zhang Y. Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising. Comput Vis Image Underst. 2017;155:162–72.CrossRefGoogle Scholar
  31. 31.
    Parr JC, Spears GFS. Mathematic relationships between the width of a retinal artery and the widths of its branches. Am J Ophthalmol. 1974;77(4):478–83.CrossRefGoogle Scholar
  32. 32.
    Relan D, MacGillivray T, Ballerini L, Trucco E. Retinal vessel classification: sorting arteries and veins. In: 35th annual international conference of the IEEE Engineering in Medicine and Biology Society EMBC. 2013. pp. 7396–7399. IEEE.Google Scholar
  33. 33.
    Rumpf M, Telea A. A continuous skeletonization method based on level sets. In: Proceedings of the symposium on data visualisation. 2002. pp. 151-ff. Eurographics Association.Google Scholar
  34. 34.
    Schmid C. Constructing models for content-based image retrieval. In: Computer vision and pattern recognition CVPR. 2001. IEEE.Google Scholar
  35. 35.
    Stokoe NL, Turner RW. Normal retinal vascular pattern. Arteriovenous ratio as a measure of arterial calibre. Br J Ophthalmol. 1966;50(1):21.CrossRefGoogle Scholar
  36. 36.
    Usman A, Khitran SA, Akram MU, Nadeem Y. A robust algorithm for optic disc segmentation from colored fundus images. In: International conference image analysis and recognition. 2014. pp. 303–310. Berlin: Springer.Google Scholar
  37. 37.
    Vázquez SG, Cancela B, Barreira N, Penedo MG, Saez M. On the automatic computation of the arterio-venous ratio in retinal images: using minimal paths for the artery/vein classification. In: International conference on digital image computing: techniques and applications DICTA. 2010. pp. 599–604. IEEE.Google Scholar
  38. 38.
    Vázquez SG, Cancela B, Barreira N, Penedo MG, Rodríguez-Blanco M, Seijo MP, de Tuero GC, Barceló MA, Saez M. Improving retinal artery and vein classification by means of a minimal path approach. Mach Vis Appl. 2013;24(5):919–30.CrossRefGoogle Scholar
  39. 39.
    Vijayakumar V, Koozekanani DD, White R, Kohler J, Roychowdhury S, Parhi KK. Artery/vein classification of retinal blood vessels using feature selection. In: 38th annual international conference of the IEEE Engineering in Medicine and Biology Society EMBC. 2016. pp. 1320–1323. IEEE.Google Scholar
  40. 40.
    Welikala RA, Fraz MM, Hayat S, Rudnicka AR, Foster PJ, Whincup PH, Owen CG, Strachan DP, Barman SA. Automated retinal vessel recognition and measurements on large datasets. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5239–42.Google Scholar
  41. 41.
    Welikala RA, Foster PJ, Whincup PH, Rudnicka AR, Owen CG, Strachan DP, Barman SA. Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort. Comput Biol Med. 2017;90:23–32.CrossRefGoogle Scholar
  42. 42.
    Yin X, Ng BW, He J, Zhang Y, Abbott D. Accurate image analysis of the retina using hessian matrix and binarisation of thresholded entropy with application of texture mapping. PLoS ONE. 2014;9(4):e95943.CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Rada L, Chen K, Harding SP, Zheng Y. Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging. 2015;34(9):1797–807.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cyberspace Institute of Advanced TechnologyGuangzhou UniversityGuangzhouChina
  2. 2.Institute for Sustainable Industries and Liveable CitiesVictoria UniversityMelbourneAustralia

Personalised recommendations