Extracting features with medical sentiment lexicon and position encoding for drug reviews

  • Sisi Liu
  • Ickjai LeeEmail author
Part of the following topical collections:
  1. Special Issue on Application of Artificial Intelligence in Health Research


Medical sentiment analysis refers to the extraction of sentiments or emotions from documents retrieved from healthcare sources, such as public forums and drug review websites. Previous studies prove that sentiment analysis for clinical documents has the potential for assisting patients with information for self assessing treatments, providing health professionals with more insights into patients’ health conditions, or even managing relations between patients and doctors. Nevertheless, the lack of data used for empirical experiments in previous research indicates that there are strong needs for a systematic framework in order to identify medical field specific sentiments. We propose a new feature extraction approach utilising position embeddings to generate a medical domain enhanced sentiment lexicon with position encoding representation for drug review sentiment analysis. Experiments on different feature extraction methods using two types of sentiment lexicons with various machine learning classifiers, support the superior performance of sentiment classification with position encoding incorporated medical sentiment lexicon for drug review datasets.



  1. 1.
    Ali T, Schramm D, Sokolova M, Inkpen D. Can i hear you? sentiment analysis on medical forums. In: Proceedings of the sixth international joint conference on natural language processing. 2013. p. 667–673.Google Scholar
  2. 2.
    Melzi S, Abdaoui A, Azé J, Bringay S, Poncelet P, Galtier F. Patient’s rationale: patient knowledge retrieval from health forums. In: eTELEMED: eHealth, Telemedicine, and Social Medicine. 2014.Google Scholar
  3. 3.
    Zhao L, Li Q, Xue Y, Jia J, Feng L. A systematic exploration of the micro-blog feature space for teens stress detection. Health Inf Sci Syst. 2016;4(1):3.CrossRefGoogle Scholar
  4. 4.
    Gopalakrishnan V, Ramaswamy C. Patient opinion mining to analyze drugs satisfaction using supervised learning. J Appl ResTechnol. 2017;15(4):311–9.Google Scholar
  5. 5.
    Denecke K, Deng Y. Sentiment analysis in medical settings: new opportunities and challenges. Artif Intell Med. 2015;64(1):17–27.CrossRefGoogle Scholar
  6. 6.
    Gohil S, Vuik S, Darzi A. Sentiment analysis of health care tweets: review of the methods used. JMIR Public Health Surveill. 2018;4(2):e43.CrossRefGoogle Scholar
  7. 7.
    Beam AL, Kompa B, Fried I, Palmer NP, Shi X, Cai T, Kohane IS. Clinical concept embeddings learned from massive sources of medical data. 2018. arXiv:1804.01486.
  8. 8.
    Liu H, Feng J, Qi M, Jiang J, Yan S. End-to-end comparative attention networks for person re-identification. IEEE Trans Image Process. 2017;26(7):3492–506.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Advances in neural information processing systems. 2017. p. 5998–6008.Google Scholar
  10. 10.
    Deng Y, Stoehr M, Denecke K. Retrieving attitudes: sentiment analysis from clinical narratives. In: MedIR@ SIGIR. 2014. p. 12–15Google Scholar
  11. 11.
    Islam MR, Kabir MA, Ahmed A, Kamal ARM, Wang H, Ulhaq A. Depression detection from social network data using machine learning techniques. Health Inf Sci Syst. 2018;6(1):8.CrossRefGoogle Scholar
  12. 12.
    Mondal A, Satapathy R, Das D, Bandyopadhyay S: A hybrid approach based sentiment extraction from medical context. In: SAAIP@ IJCAI. Volume 1619. 2016. p. 35–40.Google Scholar
  13. 13.
    Baccianella S, Esuli A, Sebastiani F: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC. Volume 10. 2010. p. 2200–2204.Google Scholar
  14. 14.
    Goeuriot L, Na JC, Min Kyaing WY, Khoo C, Chang YK, Theng YL, Kim JJ. Sentiment lexicons for health-related opinion mining. In: Proceedings of the 2nd ACM SIGHIT international health informatics symposium, ACM 2012. p. 219–226.Google Scholar
  15. 15.
    Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al. Tensorflow: a system for large-scale machine learning. OSDI. 2016;16:265–83.Google Scholar
  16. 16.
    Shah S, Luo X, Kanakasabai S, Tuason R, Klopper G. Neural networks for mining the associations between diseases and symptoms in clinical notes. Health Inf. Sci. Syst. 2019;7(1):1.CrossRefGoogle Scholar
  17. 17.
    Jiang Z, Li L, Huang D, Jin L. Training word embeddings for deep learning in biomedical text mining tasks. In: IEEE international conference on bioinformatics and biomedicine (BIBM). 2015. p. 625–628.Google Scholar
  18. 18.
    Li C, Song R, Liakata M, Vlachos A, Seneff S, Zhang X. Using word embedding for bio-event extraction. Proc BioNLP. 2015;15:121–6.CrossRefGoogle Scholar
  19. 19.
    Nikfarjam A, Sarker A, O’connor K, Ginn R, Gonzalez G. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inf Assoc. 2015;22(3):671–81.Google Scholar
  20. 20.
    Wei CH, Harris BR, Kao HY, Lu Z. tmvar: a text mining approach for extracting sequence variants in biomedical literature. Bioinformatics. 2013;29(11):1433–9.CrossRefGoogle Scholar
  21. 21.
    Białecki A, Muir R, Ingersoll G, Imagination L. Apache lucene 4. In: SIGIR 2012 workshop on open source information retrieval. 2012. p. 17.Google Scholar
  22. 22.
    Saeed M, Lieu C, Raber G, Mark RG. Mimic ii: a massive temporal icu patient database to support research in intelligent patient monitoring. In: Computers in cardiology, 2002. IEEE. 2002. p. 641–644.Google Scholar
  23. 23.
    Rehurek R, Sojka P: Software framework for topic modelling with large corpora. In: In Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks. 2010. p. 45–50.Google Scholar
  24. 24.
    Asghar MZ, Khan A, Ahmad S, Kundi FM. A review of feature extraction in sentiment analysis. J Basic Appl Sci Res. 2014;4(3):181–6.Google Scholar
  25. 25.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The weka data mining software: an update. ACM SIGKDD Explor Newslett. 2009;11(1):10–8.CrossRefGoogle Scholar
  26. 26.
    Scholkopf B, Sung KK, Burges CJ, Girosi F, Niyogi P, Poggio T, Vapnik V. Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process. 1997;45(11):2758–65.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Discipline of Computer Science & Information Technology, College of Science & EngineeringJames Cook UniversityCairnsAustralia

Personalised recommendations