Biological Theory

, Volume 11, Issue 4, pp 192–206

A Mathematical Science of Qualities: A Sequel

Original Article

Abstract

Following a previous article published in Biological Theory, in this study we present a mathematical theory for a science of qualities as directly perceived by living organisms, and based on morphological patterns. We address a range of qualitative phenomena as observables of a psychological system seen as an impredicative system. The starting point of our study is the notion that perceptual phenomena are projections of underlying invariants, objects that remain unchanged when transformations of a certain class under consideration are applied. The study develops with the observables, the entailed total order and metric, whence the algebra and the geometry of such a science, presenting a formal phenomenological model for phenomena that are not rigidly Euclidean. We show how non-Euclidean perception can have many useful (non-rigid) Euclidean formalizations, as well as locally-homeomorphic-to-Euclidean-space models. The mathematical models we provide are tested on the basis of results from experimental psychology, in particular from the field of color, time, and space perception.

Keywords

Color Geometric model Qualitative Manifold Space Time 

References

  1. Albers J (1975) Interaction of color. Yale University Press, New HavenGoogle Scholar
  2. Albertazzi L (1993) The time of presentness: a chapter in positivistic and descriptive psychology. Axiomathes 10(1–3):49–73. doi:10.1007/BF02681816 Google Scholar
  3. Albertazzi L (2004) Stereokinetic shapes and their shadows. Perception 33:1437–1452CrossRefGoogle Scholar
  4. Albertazzi L (2012) Qualitative perceiving. J Conscious Stud 19(11–12):37–47Google Scholar
  5. Albertazzi L (2013a) Experimental phenomenology: an introduction. In: Albertazzi L (ed) The Wiley Blackwell handbook of experimental phenomenology. Visual perception of shape, space and appearance. Blackwell-Wiley, Chichester, pp 1–36CrossRefGoogle Scholar
  6. Albertazzi L (2013b) Appearances from a radical viewpoint. In: Albertazzi L (ed) The Wiley Blackwell handbook of experimental phenomenology. Visual perception of shape, space and appearance. Blackwell-Wiley, Chichester, pp 267–290CrossRefGoogle Scholar
  7. Albertazzi L (2015a) A science of qualities. Biol Theory. doi:10.1007/s13752-015-0213-3 Google Scholar
  8. Albertazzi L (2015b) Spatial elements in visual awareness. Challenges for an intrinsic “geometry” of the visible. Philos Sci 19(3):95–125Google Scholar
  9. Albertazzi L (2015c) Introduction to the special issue on morphologies in nature and art. Art Percept 3(3):213–219CrossRefGoogle Scholar
  10. Albertazzi L, Da Pos O (2016) Colour names, stimulus colour, and their subjective links. Color Res Appl. doi:10.1002/col.22034 Google Scholar
  11. Albertazzi L, Poli R (2014) Multi-leveled objects: colour as a case study. Front Psychol. doi:10.3389/fpsyg.2014.00592 Google Scholar
  12. Albertazzi L, van Tonder G, Vishwanath D (2010) Information in perception. In: Albertazzi L, van Tonder G, Vishwanath D (eds) Perception beyond inference: the information content of perceptual processes. MIT Press, Cambridge, pp 1–26Google Scholar
  13. Albertazzi L, Canal L, Da Pos O et al (2012) The hue of shapes. J Exp Psychol Hum Percept Perform 39(1):37–47. doi:10.1037/a0028816 CrossRefGoogle Scholar
  14. Albertazzi L, Malfatti M, Canal L, Micciolo R (2014a) The hue of angles: Was Kandinsky right? Art Percept 3(1):81–92. doi:10.1163/22134913-00002025 CrossRefGoogle Scholar
  15. Albertazzi L, Canal L, Dadam J, Micciolo R (2014b) The semantics of biological forms. Perception 43:1365–1376. doi:10.1068/p7794 Google Scholar
  16. Albertazzi L, Canal L, Micciolo R (2015a) Cross-modal associations between materic painting and Spanish classical music. Front Psychol. doi:10.3389/fpsyg.2015.00424 Google Scholar
  17. Albertazzi L, Bacci F, Canal L, Micciolo R (2015b) The tactile dimensions of abstract paintings: a cross-modal study. Perception 45(7):805–822. doi:10.1177/0301006616643660 CrossRefGoogle Scholar
  18. Astbury WT (1961) Molecular biology or ultrastructural biology? Nature 190(4781):1124. doi:10.1038/1901124a0 CrossRefGoogle Scholar
  19. Benussi V (1913) Psychologie der Zeitauffassung. Winter, HeidelbergGoogle Scholar
  20. Burigana L, Da Pos O (2013) Qualitative inference rules for perceptual transparency. In: Albertazzi L (ed) The Wiley Blackwell handbook of experimental phenomenology. Visual perception of shape, space and appearance. Blackwell-Wiley, Chichester, pp 343–368Google Scholar
  21. Calabresi R (1930) La determinazione del presente psichico. Bemporad, FlorenceGoogle Scholar
  22. Canal L, Micciolo R (2013) The measurement of the unmeasurable. In: Albertazzi L (ed) The Wiley Blackwell handbook of experimental phenomenology. Visual perception of shape, space and appearance. Blackwell-Wiley, Chichester, pp 477–498CrossRefGoogle Scholar
  23. Chapanis A, Mankin DA (1967) The vertical–horizontal illusion in a visually-rich environment. Percept Psychophys 2(6):249–255. doi:10.3758/BF03212474 CrossRefGoogle Scholar
  24. Coren S, Gyrus J (1978) Seeing is deceiving: the psychology of visual illusions. Lawrence Erlbaum, HillsdaleGoogle Scholar
  25. Da Pos O, Albertazzi L (2010) It is in the nature of colour…. Seeing and Perceiving 23(2010):39–73CrossRefGoogle Scholar
  26. Ebbinghaus H (1902) Grundzüge der Psychologie. Veit, LeipzigGoogle Scholar
  27. Ehm W, Wackermann J (2012) Modelling geometric-optical illusions: a variational approach. J Math Psychol 56:404–416CrossRefGoogle Scholar
  28. Ehm W, Wackermann J (2016) Geometric-optical illusions and Riemannian geometry. J Math Psychol 71:28–38CrossRefGoogle Scholar
  29. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, BostonGoogle Scholar
  30. Gregory RL (1997) Visual illusions classified. Trends Cogn Sci 1:190–194CrossRefGoogle Scholar
  31. Hammond C (2012) Time warped: unlocking the mysteries of time perception. Canongate, LondonGoogle Scholar
  32. Hartmann N (1940) Der Aufbau der realen Welt. Grundiss der allgemeinen Kategorienlehre. De Gruyter, BerlinCrossRefGoogle Scholar
  33. Hartmann N (1950) Philosophie der Natur. Abriss der speziells en Kategorienlehre. De Gruyter, BerlinCrossRefGoogle Scholar
  34. Hering E (1861) Beiträge zur Physiologie. I. Zur Lehre vom Ortssinne der Netzhaut. Engelmann, LeipzigGoogle Scholar
  35. Hering E (1920/1964) Outlines of a theory of the light sense. Springer, BerlinGoogle Scholar
  36. Hogeweg P (2011) The roots of bioinformatics in theoretical biology. PLoS Comput Biol 7(3):e1002021CrossRefGoogle Scholar
  37. Husserl E (1966/1991) Zur Phänomenologie des inneren Zeitbewusstseins. In: Boehm R, Husserliana X (eds) Martinus Nijhoff, Den Haag. Eng. tr. (1991) Brough JB (trans). Kluwer, DordrechtGoogle Scholar
  38. James W ([1950]1890) Principles of psychology. Holt, Boston. Repr. 1950, Dover, New YorkGoogle Scholar
  39. Jammer M (1954) The history of theories of space in physics. Harvard University Press, CambridgeGoogle Scholar
  40. Kanizsa G (1979) Organization in vision: essays on gestalt perception. Praeger, New YorkGoogle Scholar
  41. Kanizsa G (1991) Vedere e pensare. Il Mulino, BolognaGoogle Scholar
  42. Katz D (1906) Experimentelle Beiträge zur Psychologie des Vergleichs im Gebiete des Zeitsinns. Z Psychol 42:302–340Google Scholar
  43. Kitano H (2002) Computational systems biology. Nature 420(6912):206–210. doi:10.1038/nature01254 CrossRefGoogle Scholar
  44. Köhler W (1929) Gestalt psychology. Liveright, New YorkGoogle Scholar
  45. Libet B (1982) Brain stimulation in the study of neuronal functions for conscious sensory experience. Hum Neurobiol 1:235–242Google Scholar
  46. Libet B (1987) Consciousness: conscious, subjective experience. In: Adelman G (ed) Encyclopedia of neuroscience. Birkhäuser, Boston, pp 271–275Google Scholar
  47. Libet B (2004) Mind time: the temporal factors in consciousness. Harvard University Press, CambridgeGoogle Scholar
  48. Libet B, Wright EW Jr, Feinstein B, Peral DK (1992) Retroactive enhancement of a skin sensation by a delayed cortical stimulus in man: evidence for delay of a conscious sensory experience. Conscious Cogn 1:367–375CrossRefGoogle Scholar
  49. Lipps T (1897) Raumaesthetik und geometrisch-optische Täuschungen. Barth, LeipzigGoogle Scholar
  50. Löfgren L (1968) An axiomatic explanation of complete self-reproduction. Bull Math Biol 30:415–425Google Scholar
  51. Louie AH (2009) More than life itself: a synthetic continuation in relational biology. Ontos, FrankfurtCrossRefGoogle Scholar
  52. Louie AH (2013) The reflection of life: functional entailment and imminence in relational biology. Springer, New YorkCrossRefGoogle Scholar
  53. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. Freeman, New YorkGoogle Scholar
  54. McTaggart JME (1908) The unreality of time. Mind 17:457–474CrossRefGoogle Scholar
  55. Metzger W (1930) Optische Untersuchungen am Ganzfeld. Psychol Forsch 13:6–29CrossRefGoogle Scholar
  56. Metzger W (1936/2006) Laws of seeing. Spillmann L, Lehar S, Stromeyer M, Wertheimer M (trans). MIT Press, CambridgeGoogle Scholar
  57. Metzger W (1941/1963) Psychologie: die Entwicklung ihrer Grundannahmen seit der Einführung des Experiments. Steinkopf, DresdenGoogle Scholar
  58. Michotte A (1948/1991) L’énigme psychologique de la perspective dans le dessin linéaire, Bull l’Acad R Belg 5(34):268–288. English translation, Costal A (trans) (1991) The psychological enigma of perspective in outline pictures. In: Thinès G, Costall A, Butterworth G (eds) Michotte’s experimental phenomenology of perception. Lawrence Erlbaum, Hillsdale, p 174–187Google Scholar
  59. Michotte A (1954) La perception de la causalité. Publications Universitaires de Louvain, LouvainGoogle Scholar
  60. Michotte A (1963) In: Miles TR, Miles E (eds) The perception of causality. Methuen, LondonGoogle Scholar
  61. Müller-Lyer FC (1889) Optische Urteilstäuschungen. Arch Anat Physiol Physiol Abt Suppl 2:263–270Google Scholar
  62. Musatti CL (1924) Sui fenomeni stereocinetici. Arch Ital Psicol 3:105–120Google Scholar
  63. Musatti CL (1955) La stereocinesi e la struttura dello spazio visibile. Riv Psicol 49:3–57Google Scholar
  64. Musatti CL (1975) Stereokinetic phenomena and their interpretation. In: D’Arcais GB (ed) Studies in perception, Festschrift for Fabio Metelli. Giunti, Milan, pp 166–189Google Scholar
  65. Oppel JJ (1854–1855) Über geometrisch-optische Täuschungen. Jahresbericht des physikalischen Vereins zu Frankfurt am Main, p 37–47Google Scholar
  66. Osgood CE (1956) Method and theory in experimental psychology. Oxford University Press, OxfordGoogle Scholar
  67. Petitot J (2009) Neurogéométrie de la vision. Modèles mathématiques et physiques des architectures fonctionelles. Le Editions de L’Ecole Polytechnique, ParisGoogle Scholar
  68. Pizlo Z (2001) Perception viewed as an inverse problem. Vis Res 41(24):3145–3161. doi:10.1016/S0042-6989(01)00173-0 CrossRefGoogle Scholar
  69. Poli R (2001) The basic problem of the theory of levels of reality. Axiomathes 12(3–4):261–283CrossRefGoogle Scholar
  70. Poli R (2006a) First steps in experimental phenomenology. In: Loula A, Gudwin R, Queiroz J (eds) Artificial cognition systems. Idea Group Publishing, Hersey, pp 358–386Google Scholar
  71. Poli R (2006b) Levels of reality and the psychological stratum. Rev int philos 61(2):163–180Google Scholar
  72. Poli R (2007) Three obstructions: forms of causation, chronotopoids, and levels of reality. Axiomathes 17(1):1–18. doi:10.1007/s10516-007-9007-y CrossRefGoogle Scholar
  73. Poli R (2011) Ontology as categorial analysis. In: Slavicand A, Civallero E (eds) Classification and ontology: formal approaches and access to knowledge. ErgonVerlag, Würzburg, pp 145–157Google Scholar
  74. Poli R (2016) Pure and qualified time. In: Poli R, Peterson K (eds) New research on the philosophy of Nicolai Hartmann. De Gruyter, Berlin, pp 3–22Google Scholar
  75. Ponzo M (1912) Rapports de contraste angulaire et l’appréciation de grandeur des astres à l’horizon. Arch Ital Biol 58:327–329Google Scholar
  76. Pöppel E (1994) Temporal mechanism in perception. Int Rev Neurobiol 37:185–202CrossRefGoogle Scholar
  77. Pöppel E, Bao Y (2014) Temporal windows as a bridge from objective to subjective time. In: Arstila V, Lloyd D (eds) Subjective time. MIT Press, Cambridge, pp 241–262Google Scholar
  78. Rensink RA (2000) Seeing, sensing, scrutinizing. Vis Res 40:1469–1487CrossRefGoogle Scholar
  79. Rensink RA (2002) Change detection. Annu Rev Psychol 53:245–277CrossRefGoogle Scholar
  80. Richardson IW, Louie AH (1983) Projections as representations of phenomena. J Theor Biol 102:199–223CrossRefGoogle Scholar
  81. Rock I (1977) In defence of unconscious inferences. In: Epstein W (ed) Stability and constancy in visual perception: mechanism and processes. Wiley, New York, pp 321–373Google Scholar
  82. Rogers B (2014) Delusions about illusions. Perception 43:840–845Google Scholar
  83. Rosen R (1978) Fundamentals of measurement and representation of natural systems. North-Holland, New YorkGoogle Scholar
  84. Rosen R (1985/2012) Anticipatory systems: philosophical, mathematical, and methodological foundations. Pergamon Press, Oxford. (2012) 2nd edn, Springer, New YorkGoogle Scholar
  85. Rosen R (1991) Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press, New YorkGoogle Scholar
  86. Rosen R (2000) Essays on life itself. Columbia University Press, New YorkGoogle Scholar
  87. Rubin E (1949) Geräuschverschiebungsversuche. In: Experimenta psychologica. Munkgaard, CopenhagenGoogle Scholar
  88. Sander F (1926) Optische Täuschungen und Psychologie. Neue Psychol Stud 1:159–166Google Scholar
  89. Sivik L (1974) Colour meaning and perceptual colour dimensions: a study of colour samples. Göteb Psychol Rep 4(1):1–17Google Scholar
  90. Smith DA (1978) A descriptive model for perception of optical illusions. J Math Psychol 17:64–85CrossRefGoogle Scholar
  91. Sovrano VA, Albertazzi L, Rosa Salva O (2013) The Ebbinghaus illusion in a fish (Xenotoca eiseni). Anim Cogn. doi:10.1007/s10071-014-0821-5 Google Scholar
  92. Sovrano VA, Da Pos O, Albertazzi L (2015) The Mueller–Lyer illusion in the teleost fish Xenotoca eiseni. Anim Cogn. doi:10.1007/s10071-015-0917-6 Google Scholar
  93. Stroyan KD, Luxemburg WAJ (1976) Introduction to the theory of infinitesimals. Academic, New YorkGoogle Scholar
  94. Thom R (1979) Towards a revival of natural philosophy. In: Guttinger W, Eikemeier H (eds) Structural stability in physics. Springer, Berlin, pp 5–11CrossRefGoogle Scholar
  95. Vicario GB (1998) Forms and events. In: Albertazzi L (ed) Shapes of forms: from gestalt psychology and phenomenology to ontology and mathematics. Kluwer, Dordrecht, pp 89–106Google Scholar
  96. Vishwanath D (2010) Visual information in surface and depth perception: reconciling pictures and reality. In: Albertazzi L, van Tonder G, Vishwanath D (eds) Perception beyond inference: the information content of perceptual processes. MIT Press, Cambridge, pp 201–240Google Scholar
  97. Vishwanath D (2014) Towards a new theory of stereopsis. Psychol Rev 121(2):151–178CrossRefGoogle Scholar
  98. Wagner M (1985) The metric of visual space. Percept Psychophys 38:483–495CrossRefGoogle Scholar
  99. Wertheimer M (1912/1967) Experimentelle Studien über das Sehen von Bewegungen. Z Psychol Physiol Sinnesorgane 61:161–265 (reprinted 1967 in Drei Abhandlungen zur Gestalttheorie. Wissenschaftliche Buchgesellschaft, Darmstadt, p 1–105)Google Scholar
  100. Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt. Psychol Forsch 4:301–350CrossRefGoogle Scholar
  101. Wyszecki G, Stiles WS (1982) Colour science. Concepts and methods, quantitative data and formulae. Wiley, New YorkGoogle Scholar
  102. Zöllner JF (1860) Über eine neue Art von Pseudoskopie und ihre Beziehungen zu den von Plateau und Oppel beschriebenen Bewegungsphänomenen. Ann Phys Chem 110:500–523CrossRefGoogle Scholar

Copyright information

© Konrad Lorenz Institute for Evolution and Cognition Research 2016

Authors and Affiliations

  1. 1.Center for Mind/Brain Sciences (CIMeC), and Department of HumanitiesUniversity of TrentoTrentoItaly
  2. 2.Stellenbosch Institute for Advanced Study (STIAS)StellenboschSouth Africa
  3. 3.OttawaCanada

Personalised recommendations