Biological Theory

, Volume 8, Issue 4, pp 383–390 | Cite as

Simulating a Model of Metabolic Closure

  • Athel Cornish-Bowden
  • Gabriel Piedrafita
  • Federico Morán
  • María Luz Cárdenas
  • Francisco Montero
Thematic Issue Article: Synthesis (σύνθεσις)


The goal of synthetic biology is to create artificial organisms. To achieve this it is essential to understand what life is. Metabolism-replacement systems, or (MR)-systems, constitute a theory of life developed by Robert Rosen, characterized in the statement that organisms are closed to efficient causation, which means that they must themselves produce all the catalysts they need. This theory overlaps in part with other current theories, including autopoiesis, the chemoton, and autocatalytic sets, all of them invoking some idea of closure. A simple model of an (MR)-system has been implemented in the computer, and behaves in ways that may shed light on the requirements for a prebiotic self-organizing system. In addition to a trivial steady state in which nothing happens, it can establish a non-trivial steady state in which all intermediates have finite concentrations, with their rates of degradation balanced by their rates of synthesis. The system can be regenerated from the set of food components plus a single intermediate, and maintain itself in that state indefinitely, despite continuous degradation. At the very low compartment volumes that may have existed in prebiotic conditions, for example in cavities in minerals, or in micelles formed by simple amphiphiles, statistical fluctuations in the numbers of molecules need to be taken into account. With the stochastic approach there is no non-trivial steady state in strict mathematical terms, because the system will always collapse to the trivial state after sufficient time. However, the average time before collapse is so long for volumes greater than \(10^{-19}\;{\textsc{l}}\) (much smaller than the volume of the order of \(10^{-15}\;{\textsc{l}}\) for a typical bacterial cell) that for practical purposes the self-maintaining state of non-null concentrations becomes significant, recalling the situation of bistability that is observed in deterministic analysis. In turn, there exists a minimum size below which the self-organizing system cannot maintain itself on chemically relevant time scales. The value of the critical volume depends on the particular concentrations and rate constants assumed, but the principle could apply generally.


Autopoiesis Chemoton Hypercycles Metabolic closure (MR)-systems Self-organization Simulation 



This work was supported by grant BFU2009-12895-C02-02 (Ministerio de Ciencia e Innovación, Spain). GP acknowledges support from PhD scholarship FPU (Formación del Profesorado Universitario, Ministry of Education, Spain). AC-B and MLC were supported by the Centre National de la Recherche Scientifique.


  1. Barge LM, Doloboff IJ, White LM, Stucky GD, Russell MJ, Kanik I (2012) Characterization of iron–phosphate–silicate chemical garden structures. Langmuir 28(8):3714–3721 doi: 10.1021/la203727g CrossRefGoogle Scholar
  2. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26(9):483–489 doi: 10.1016/j.tibtech.2008.05.004 CrossRefGoogle Scholar
  3. Briggs DE (1962) Simplification of assay of enzymes using non-linear reaction-progress graphs. Enzymologia 24(2):97–104Google Scholar
  4. Briones C, Stich M, Manrubia SC (2009) The dawn of the RNA World: toward functional complexity through ligation of random RNA oligomers. RNA Publ RNA Soc 15(5):743–749 doi: 10.1261/rna.1488609 CrossRefGoogle Scholar
  5. Cárdenas ML, Letelier JC, Gutierrez C, Cornish-Bowden A, Soto-Andrade J (2010) Closure to efficient causation, computability and artificial life. J Theor Biol 263(1):79–92 doi: 10.1016/j.jtbi.2009.11.010 CrossRefGoogle Scholar
  6. Chemero A, Turvey MT (2006) Complexity and closure to efficient cause. In: Ruiz-Mirazo K, Barandiaran R (eds) ALIFE X: workshop on artificial autonomy. MIT Press, Cambridge, MA, pp 13–18Google Scholar
  7. Chen IA, Walde P (2010) From self-assembled vesicles to protocells. Cold Spring Harbor Perspect. Biol. 2(7) doi: 10.1101/cshperspect.a002170
  8. Chiarabelli C, Stano P, Anella F, Carrara P, Luisi P (2012) Approaches to chemical synthetic biology. FEBS Lett 586(15):2138–2145 doi: 10.1016/j.febslet.2012.01.014 CrossRefGoogle Scholar
  9. Cornish-Bowden A, Cárdenas ML, Letelier JC, Soto-Andrade J (2007) Beyond reductionism: metabolic circularity as a guiding vision for a real biology of systems. Proteomics 7(6):839–845 doi: 10.1002/pmic.200600431 CrossRefGoogle Scholar
  10. de la Mettrie JJO (1748) L’Homme machine. Elie Luzac, LeydenGoogle Scholar
  11. Eigen M, Schuster P (1977) The hypercycle—a principle of natural self-organization. A. Emergence of the hypercycle. Naturwissenschaften 64(11):541–565 doi: 10.1007/BF00450633 CrossRefGoogle Scholar
  12. Gánti T (2003) The principles of life. Oxford University Press, OxfordCrossRefGoogle Scholar
  13. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison III, CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987): 52–56CrossRefGoogle Scholar
  14. Gillespie DT (1976) A general method for numerically simulating stochastic time evolution of coupled chemical-reactions. J Comput Phys 22(4):403–434 doi: 10.1016/0021-9991(76)90041-3 CrossRefGoogle Scholar
  15. Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. J Phys Chem 81(25):2340–2361 doi: 10.1021/j100540a008 CrossRefGoogle Scholar
  16. Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302(5645):618–622 doi: 10.1126/science.1089904 CrossRefGoogle Scholar
  17. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a Complex pathway simulator. Bioinformatics 22(24):3067–3074 doi: 10.1093/bioinformatics/btl485 CrossRefGoogle Scholar
  18. Hordijk W, Fontanari JF (2003) Catalytic reaction sets, decay, and the preservation of information. In: Hexmoor H (ed) International conference on integration of knowledge intensive multi-agent systems: KIMAS’03: Modeling, exploration, and engineering. IEEE, New York, pp 133–138 doi: 10.1109/KIMAS.2003.1245035
  19. Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119(1):1–24 doi: 10.1016/S0022-5193(86)80047-9 CrossRefGoogle Scholar
  20. Leduc S (1912) La Biologie Synthétique. Poinat, ParisGoogle Scholar
  21. Letelier JC, Cárdenas ML, Cornish-Bowden A (2011) From L’Homme machine to metabolic closure: steps towards understanding life. J Theor Biol 286:100–113 doi: 10.1016/j.jtbi.2011.06.033 CrossRefGoogle Scholar
  22. Letelier JC, Kuboyama T, Yasuda TH, Cárdenas ML, Cornish-Bowden A (2005) A self-referential equation, f(f) = f, obtained using the theory of (MR) systems: overview and applications. In: Anai H, Horimoto K (eds) Algebraic biology. Universal Academy Press, Tokyo, pp 115–126Google Scholar
  23. Letelier JC, Soto-Andrade J, Guíñez Abarzua F., Cornish-Bowden A., Cárdenas ML (2006) Organizational invariance and metabolic closure: analysis in terms of (MR) systems. J Theor Biol 238(4):949–961 doi: 10.1016/j.jtbi.2005.07.007 CrossRefGoogle Scholar
  24. Luisi PL (2006) The emergence of life. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc B 358(1429):59–83 doi: 10.1098/rstb.2002.1183 CrossRefGoogle Scholar
  26. Maturana H, Varela F (1980) Autopoiesis and cognition: the realisation of the living. D. Reidel Publishing Company, DordrechtCrossRefGoogle Scholar
  27. Mill JS (1846) A system of logic. Harper & Brothers, New York, pp 211Google Scholar
  28. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148 doi: 10.1038/nbt.1755 CrossRefGoogle Scholar
  29. Morán F, Moreno A, Minch E, Montero F (1996) Further steps towards a realistic description of the essence of life. In: Langton CG, Shimohara K (eds) Artificial life V. MIT Press, Cambridge, MA, pp 255–263Google Scholar
  30. Piedrafita G, Montero F, Morán F, Cárdenas ML, Cornish-Bowden A (2010) A simple self-maintaining metabolic system: robustness, autocatalysis, bistability. PLoS Comput Biol 6(8):e1000,872 doi: 10.1371/journal.pcbi.1000872 CrossRefGoogle Scholar
  31. Piedrafita G, Cornish-Bowden A, Morán F, Montero F (2012a) Size matters: influence of stochasticity on the self-maintenance of a simple model of metabolic closure. J Theor Biol 300:143–151CrossRefGoogle Scholar
  32. Piedrafita G, Ruiz-Mirazo K, Monnard PA, Cornish-Bowden A, Montero F (2012b) Viability conditions for a compartmentalized protometabolic system: a semi-empirical approach. PLoS ONE 7:e39,480CrossRefGoogle Scholar
  33. Rosen R (1971) Some realizations of (MR)-systems and their interpretation. Bull Math Biophys 33(3):303–319 doi: 10.1007/BF02476776 CrossRefGoogle Scholar
  34. Rosen R (1973) On the dynamical realization of (MR)-systems. Bull Math Biol 35(1-2):1–9CrossRefGoogle Scholar
  35. Rosen R (1991) Life itself. Columbia University Press, New YorkGoogle Scholar
  36. Ruiz-Mirazo K, Piedrafita G, Ciriaco F, Mavelli F (2011) Stochastic simulations of mixed-lipid compartments: from self-assembling vesicles to self-producing protocells. Adv Exp Med Biol 696:689–696CrossRefGoogle Scholar
  37. Sánchez-Izquierdo F, Blanco P, Busqué F, Alibés R, de March P, Figueredo Galimany M, Font J, Parella T (2007) Total synthesis of the putative structure of stemonidine: the definitive proof of misassignment. Org Lett 9(9):1769–1772 doi: 10.1021/ol070486p CrossRefGoogle Scholar
  38. Schrödinger E (1944) What is life? Cambridge University Press, Cambridge, UKGoogle Scholar
  39. Smith MT, Cornish-Bowden A, Briggs DE (1979) Determination of barley α-amylase activity. J Inst Brew 85(4):157–159CrossRefGoogle Scholar
  40. Szathmáry E (2007) Coevolution of metabolic networks and membranes: the scenario of progressive sequestration. Philos Trans R Soc 362(1486):1781–1787 doi: 10.1098/rstb.2007.2070 CrossRefGoogle Scholar
  41. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409(6818):387–390CrossRefGoogle Scholar
  42. Walde P (2006) Surfactant assemblies and their various possible roles for the origin(s) of life. Orig Life Evol Biosphere 36(2):109–150 doi: 10.1007/s11084-005-9004-3 CrossRefGoogle Scholar

Copyright information

© Konrad Lorenz Institute for Evolution and Cognition Research 2013

Authors and Affiliations

  • Athel Cornish-Bowden
    • 1
  • Gabriel Piedrafita
    • 2
  • Federico Morán
    • 2
  • María Luz Cárdenas
    • 1
  • Francisco Montero
    • 2
  1. 1.Unité de Bioénergétique et Ingénierie des Protéines, Centre National de la Recherche ScientifiqueAix-Marseille UniversitéMarseilleFrance
  2. 2.Facultad de Ciencias QuímicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations