Advertisement

Biological Theory

, Volume 8, Issue 3, pp 293–311 | Cite as

On the Unique Perspective of Paleontology in the Study of Developmental Evolution and Biases

  • Séverine Urdy
  • Laura A. B. Wilson
  • Joachim T. Haug
  • Marcelo R. Sánchez-Villagra
Thematic Issue Article: Emergence of Shape

Abstract

The growing interest and major advances of the last decades in evolutionary developmental biology (EvoDevo) have led to the recognition of the incompleteness of the Modern Synthesis of evolutionary theory. Here we discuss how paleontology makes significant contributions to integrate evolution and development. First, extinct organisms often inform us about developmental processes by showing a combination of features unrecorded in living species. We illustrate this point using the vertebrate fossil record and studies relating bone ossification to life history traits. Second, we discuss exceptionally preserved fossils that document rare ontogenetic sequences and illustrate this case with the patterns of heterochrony observed in Cambrian crustacean larvae preserved three-dimensionally. Third, most fossils potentially document the evolutionary patterns of allometry and modularity, as well as some of the (paleo)ecological factors that had influenced them. The temporal persistence of adaptive patterns in rodent evolution serves to address the importance of ecological constraints in evolution. Fourth, we discuss how the macroevolutionary patterns observed in the tetrapod limb, in the mammal molar proportions, and in the molluscan shell provide independent tests of the validity of morphogenetic models proposed on living species. Reciprocally, these macroevolutionary patterns often act as a source of inspiration to investigate the underlying rules of development, because, at the end, they are the patterns that the neo-Darwinian theory was unable to account for.

Keywords

Fossils Heterochrony Modularity Morphogenesis Ontogeny Phylogeny 

Notes

Acknowledgments

We beg to be excused for the somewhat haphazard nature of the reference list of this article, as some of the topics treated here are very encompassing and have had a long history of investigation and thoughtful contributions. The article has been coordinated by MRSV, and all authors revised and commented on the different sections. MRSV thanks Jeff Schwartz and all those attending the Workshop, “The Evolution of Form,” held at the Konrad Lorenz Institute for Evolution and Cognition, Altenberg, September 2010, for fruitful discussions. SU thanks Hugo Bucher (PIMUZ) for having sampled the specimens illustrated in Figs. 4 (photographs by Noel Podevigne, UCBL) and 5 (photographs by Rosi Roth, PIMUZ), and allowing them to be published here. LABW thanks Andrea Elissamburu, Alejandro Donda, Fredy Carlini, and Diego Verzi for much help in Argentina and access to collections of Actenomys. We thank Z.-X. Luo (University of Chicago) for thoughtful suggestions. JTH was kindly supported by Yale University and by the Alexander von Humboldt Foundation with a Feodor Lynen Research Fellowship for postdoctoral researchers. LABW was supported by a Japanese Society for the Promotion of Science postdoctoral fellowship (PE 10075). SU was supported by the Swiss National Foundation (200021_124784/1 and PA00P3-136478) and the University of Zurich. This work is supported by the Swiss National Science Foundation to MRSV (31003A-133032/1).

References

  1. Adams MB (1980) Severtsov and Schmalhausen: Russian morphology and the evolutionary synthesis. In: Mayr E, Provine WB (eds) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, MA, pp 193–225Google Scholar
  2. Alberch P (1980) Ontogenesis and morphological diversification. Am Zool 20:653–667Google Scholar
  3. Alberch P (1989) The logic of monsters: evidence for internal constraint in development and evolution. Geobios (Lyon) 22(Suppl 2):21–57CrossRefGoogle Scholar
  4. Alberch P, Gale EA (1985) A developmental analysis of an evolutionary trend: digital reduction in Amphibians. Evolution 39:8–23CrossRefGoogle Scholar
  5. Amundson R (1994) Two concepts of constraint: adaptationism and the challenge from developmental biology. Philos Sci 61:556–578CrossRefGoogle Scholar
  6. Andrews HE, Brower JC, Gould SJ, Reyment RA (1974) Growth and variation in Eurypterus remipes DeKay. Bull Geol Inst Univ Upsala N.S. 4:81–114Google Scholar
  7. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builder. Proc Natl Acad Sci USA 105:17442–17446CrossRefGoogle Scholar
  8. Arnold SJ (1992) Constraints on phenotypic evolution. Am Nat 140:85–107CrossRefGoogle Scholar
  9. Arnold SJ, Bürger R, Hohenlohe PA, Ajie BC, Jones AG (2008) Understanding the evolution and stability of the G-matrix. Evolution 62:2451–2461CrossRefGoogle Scholar
  10. Arthur W (2004) The effect of development on the direction of evolution: toward a twenty-first century consensus. Evol Dev 6:282–288CrossRefGoogle Scholar
  11. Barrande J (1852) Systême Silurien du centre de la Bohême. Iére partie. Recherches paléontologiques. Chez l’auteur et éditeur, Prague-ParisCrossRefGoogle Scholar
  12. Bayer U (1970) Anomalien bei Ammoniten des Aaleniums und Bajociums und ihre Beziehung zur Lebensweise. N Jahrb Geol Paläontol Abh 135:19–41Google Scholar
  13. Berg RL (1960) The ecological significance of correlation Pleiades. Evolution 14:171–180CrossRefGoogle Scholar
  14. Bond PN, Saunders WB (1989) Sublethal injury and shell repair in upper Mississippian ammonoids. Paleobiologylogy 15:414–428Google Scholar
  15. Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  16. Brayard A, Vennin E, Olivier N, Bylund KG, Jenks J, Stephen DA, Bucher H, Hofmann R, Goudemand N, Escarguel G (2011) Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat Geosci 4:693–697CrossRefGoogle Scholar
  17. Briggs DEG, Sutton MD, Siveter DaJ, Siveter DeJ (2005) Metamorphosis in a Silurian barnacle. Proc R Soc Lond B 272:2365–2369CrossRefGoogle Scholar
  18. Bucher H (1997) Caractères périodiques et mode de croissance des ammonites: comparaison avec les gastéropodes. Geobios Mém Spéc 20:85–99CrossRefGoogle Scholar
  19. Bucher H, Guex J (1990) Rythmes de croissance chez les ammonites triasiques. Bull Lab Géol Miner Géophys Mus Geol 308:191–209Google Scholar
  20. Bucher H, Landman NH, Klofak SM, Guex J (1996) Mode and rate of growth in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiologylogy. Plenum Press, New York, pp 407–461CrossRefGoogle Scholar
  21. Budd GE (2006) On the origin and evolution of major morphological characters. Biol Rev 81:601–628CrossRefGoogle Scholar
  22. Burnaby TP (1966) Allometric growth of ammonoid shells: a generalization of logarithmic spiral. Nature 209:904–906CrossRefGoogle Scholar
  23. Callebaut W, Raskin-Gutman D (eds) (2005) Modularity: understanding the development and evolution of natural complex systems. MIT Press, Cambridge, MAGoogle Scholar
  24. Charlesworth B, Lande R, Slatkin M (1982) A neo-Darwinian commentary on macroevolution. Evolution 36:474–498CrossRefGoogle Scholar
  25. Chatterton BDE, Speyer SE (1989) Larval ecology, life history strategies and patterns of extinction and survivorship among Ordovician trilobites. Paleobiologylogy 15:118–132Google Scholar
  26. Chatterton BDE, Siveter DJ, Edgecombe GD, Hunt AS (1990) Larvae and relationships of the Calymenina (Trilobita). J Paleontol 64:255–277Google Scholar
  27. Chatterton BDE, Edgecombe GD, Speyer SE, Hunt AS, Fortey RA (1994) Ontogeny and relationships of Trinucleoidea (Trilobita). J Paleontol 68:523–540Google Scholar
  28. Checa AG, Jimenez–Jimenez AP (1997) Regulation of spiral growth in planorbid gastropods. Lethaia 30:257–269CrossRefGoogle Scholar
  29. Checa A, Company M, Sandoval J, Weitschat W (1996) Covariation of morphological characters in the Triassic ammonoid Czekanowskites rieberi. Lethaia 29:225–235CrossRefGoogle Scholar
  30. Checa AG, Jimenez–Jimenez AP, Rivas P (1998) Regulation of spiral coiling in the terrestrial gastropod Sphincterochila: an experimental test of the road-holding model. J Morphol 235:249–257CrossRefGoogle Scholar
  31. Checa AG, Okamoto T, Keupp H (2002) Abnormalities as natural experiments: a morphogenetic model for coiling regulation in planispiral ammonites. Paleobiology 28:127–138CrossRefGoogle Scholar
  32. Cheverud JM (1984) Quantitative genetics and developmental constraints on evolution by selection. J Theor Biol 110:155–171CrossRefGoogle Scholar
  33. Chinsamy-Turan A (2005) The microstructure of dinosaur bone: deciphering biology with fine-scale techniques. Johns Hopkins University Press, BaltimoreGoogle Scholar
  34. Chirat R, Enay R, Hantzpergue P, Mangold C (2008) Developmental integration related to buoyancy control in Nautiloids: evidence from unusual septal approximation and ontogenetic allometries in a Jurassic species. Palaeontology 51:251–261CrossRefGoogle Scholar
  35. Clarkson ENK, Ahlberg P (2002) Ontogeny and structure of a new, miniaturised and spiny olenid trilobite from Southern Sweden. Palaeontology 45:1–22CrossRefGoogle Scholar
  36. Cloutier R (2010) The fossil record of fish ontogenies: insights into developmental patterns and processes. Semin Cell Dev Biol 21:400–413CrossRefGoogle Scholar
  37. Coates MI, Clack JA (1990) Polydactyly in the earliest known tetrapod limbs. Nature 347:66–69CrossRefGoogle Scholar
  38. Cubo J, Laurin M (2011) Perspectives on vertebrate evolution: topics and problems. C R Palevol 10:285–515CrossRefGoogle Scholar
  39. Cuggy MB (1994) Ontogenetic variation in Silurian eurypterids from Ontario and New York State. Can J Earth Sci 31:728–732CrossRefGoogle Scholar
  40. Dagys AS, Weitschat W (1993) Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113–121CrossRefGoogle Scholar
  41. Dagys A, Bucher H, Weitschat W (1999) Intraspecific variation of Parasibirites kolymensis Bychkov (Ammonoidea) from the Lower Triassic (Spathian) of Arctic Asia. Mitt Geol Paläontol Inst Univ Hambg 83:163–178Google Scholar
  42. De Baets K, Klug C, Korn D, Landman N (2012) Evolutionary trends in ammonoid embryonal development. Evolution 66:1788–1806CrossRefGoogle Scholar
  43. de Oliveira FB, Porto A, Marroig G (2009) Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution. J Hum Evol 56:417–430CrossRefGoogle Scholar
  44. de Ricqlès A, de Buffrénil V (2001) Bone histology, heterochronies and the return of tetrapods to life in water: where are we? In: Mazin J-M, Buffrénil Vd (eds) Secondary adaptations of tetrapods to life in water. Friedrich Pfeil, München, pp 289–310Google Scholar
  45. Dean MC (2010) Retrieving chronological age from dental remains of early fossil Hominins to reconstruct human growth in the past. Philos Trans R Soc B 365:3397–3410CrossRefGoogle Scholar
  46. Delfino M, Sánchez-Villagra MR (2010) A survey of the rock record of reptilian ontogeny. Semin Cell Dev Biol 21:432–440CrossRefGoogle Scholar
  47. Dong X (2007) Developmental sequence of Cambrian embryo Markuelia. Chin Sci Bull 52:929–935CrossRefGoogle Scholar
  48. Dong X, Donoghue PCJ, Cheng H, Liu J (2004) Fossil embryos from the middle and late Cambrian period of Hunan, South China. Nature 427:237–240CrossRefGoogle Scholar
  49. Donoghue PCJ, Bengston S, Dong XP, Gostling NJ, Huldtgren T, Cunningham JA, Yin C, Yue Z, Peng F, Stampanoni M (2006a) Synchroton X-ray tomographic microscopy of fossil embryos. Nature 442:680–683CrossRefGoogle Scholar
  50. Donoghue PCJ, Kouchinsky A, Waloszek D, Bengtson S, Dong X, Valkov AK, Cunningham JA, Repetski JE (2006b) Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evol Dev 8:232–238CrossRefGoogle Scholar
  51. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New YorkGoogle Scholar
  52. Dubois E (1897) Sur le rapport de l’encéphale avec la grandeur du corps chez les Mammifères. Bull Mémo Soc d’Anthropol Paris, 4e série 8:337–376CrossRefGoogle Scholar
  53. Duncan IJ, Briggs DEG, Archer M (1998) Three-dimensionally mineralized insects and millipedes from the Tertiary of Riversleigh, Queensland, Australia. Palaeontology 41:835–851Google Scholar
  54. Eble GJ (1999) On the dual nature of chance in evolutionary biology and Paleobiology. Paleobiology 25:75–87Google Scholar
  55. Eble GJ (2004) The macroevolution of phenotypic integration. In: Pigliucci M, Preston KA (eds) Phenotypic integration. Oxford University Press, New York, pp 253–273Google Scholar
  56. Edgecombe GD, Speyer SE, Chatterton BDE (1988) Protaspid larvae and phylogenetics of encrinurid trilobites. J Paleontol 62:779–799Google Scholar
  57. Edgecombe GD, Chatterton BDE, Vaccari NE, Waisfeld BG (1997) Ontogeny of the proetoid trilobite Stenoblepharum, and relationships of a new species from the Upper Ordovician of Argentina. J Paleontol 71:419–433Google Scholar
  58. Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process. Columbia University Press, New YorkGoogle Scholar
  59. Erickson GM (2005) Assessing dinosaur growth patterns: a microscopic revolution. Trends Ecol Evol 20:677–684CrossRefGoogle Scholar
  60. Erickson GM, Makovicky PJ, Inouye BD, Zhou C-F, Gao K (2009) Life table for Psittacosaurus lujiatunensis: the first glimpse into ornithischian dinosaur population biology. Anat Rec 292:1514–1521CrossRefGoogle Scholar
  61. Erwin DH (2000) Macroevolution is more than repeated rounds of microevolution. Evol Dev 2:78–84CrossRefGoogle Scholar
  62. Fröbisch NB, Olori J, Schoch RR, Witzmann F (2010) Amphibian development in the fossil record. Semin Cell Dev Biol 21:424–431CrossRefGoogle Scholar
  63. Geiger M, Wilson LAB, Costeur L, Sánchez R, Sánchez-Villagra MR (in press) Diversity and growth in giant caviomorphs from the northern neotropics: a study of femoral variation in Phoberomys (Rodentia). J Vertebr PaleontolGoogle Scholar
  64. Gerber S, Hopkins MJ (2011) Mosaic heterochrony and evolutionary modularity: the trilobite genus Zacanthopsis as a case study. Evolution 65:3241–3252CrossRefGoogle Scholar
  65. Gilbert SF (2003) The morphogenesis of evolutionary developmental biology. Int J Dev Biol 47:467–477Google Scholar
  66. Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372CrossRefGoogle Scholar
  67. Goodwin BC (1988) Problems and prospects in morphogenesis. Experientia 44:633–637CrossRefGoogle Scholar
  68. Goswami A (2006) Cranial modularity shifts during mammalian evolution. Am Nat 168:270–280CrossRefGoogle Scholar
  69. Goswami A, Polly PD (2010) Methods for studying morphological integration and modularity. In: Alroy J, Hunt G (eds) Quantitative methods in Paleobiology. Paleontological Society Special Publications. Yale University Printing and Publishing, New Haven, pp 213–243Google Scholar
  70. Goswami A, Milne N, Wroe S (2011) Biting through constraints: cranial morphology, disparity, and convergence across living and fossil carnivorous mammals. Proc R Soc B 1713:1831–1839CrossRefGoogle Scholar
  71. Goudemand N, Orchard M, Urdy S, Bucher H, Tafforeau P (2011) Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proc Natl Acad Sci USA 108:8720–8724CrossRefGoogle Scholar
  72. Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, CambridgeGoogle Scholar
  73. Gould SJ (1980) Is a new evolutionary theory emerging? Paleobiology 6:119–130Google Scholar
  74. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc B 205:581–598CrossRefGoogle Scholar
  75. Gould SJ, Simpson GG (1980) Paleontology, and the Modern Synthesis. In: Mayr E, Provine WB (eds) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, MA, pp 193–225Google Scholar
  76. Grantham T (2007) Is macroevolution more than successive rounds of microevolution? Palaeontology 50:75–85CrossRefGoogle Scholar
  77. Guex J (1967) Contribution à l’étude des blessures chez les ammonites. Bull Lab Géol Miner Géophys Mus Geol 165:1–23Google Scholar
  78. Guex J (1968) Sur deux conséquences particulières des traumatismes du manteau des ammonites. Bull Societé Vaud Sci Nat 175:1–11Google Scholar
  79. Guex J, Koch A, O’Dogherty L, Bucher H (2003) A morphogenetic explanation of Buckman’s law of covariation. Bull Soc Géol Fr 174:603–606CrossRefGoogle Scholar
  80. Hall BK (1996) Baupläne, phylotypic stages, and constraint: why there are so few types of animals. Evol Biol 29:215–261Google Scholar
  81. Hammer O, Bucher H (1999) Reaction-diffusion processes: application to the morphogenesis of ammonoid ornamentation. Geobios 32:841–852CrossRefGoogle Scholar
  82. Hammer O, Bucher H (2005a) Buckman’s first law of covariation: a case of proportionality. Lethaia 38:67–72CrossRefGoogle Scholar
  83. Hammer O, Bucher H (2005b) Models for the morphogenesis of the molluscan shell. Lethaia 38:111–122CrossRefGoogle Scholar
  84. Haug JT, Maas A, Waloszek D (2009a) Ontogeny of two Cambrian stem crustaceans, †Goticaris longispinosa and †Cambropachycope clarksoni. Palaeontogr Abt A 289:1–43Google Scholar
  85. Haug JT, Maas A, Waloszek D, Donoghue PCJ, Bengtson S (2009b) A new species of Markuelia from the Middle Cambrian of Australia. Mem Assoc Australas Palaeontol 37:303–313Google Scholar
  86. Haug JT, Maas A, Waloszek D (2010a) †Henningsmoenicaris scutula, †Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Earth Environ Sci Trans R Soc Edinb 100:311–350CrossRefGoogle Scholar
  87. Haug JT, Waloszek D, Haug C, Maas A (2010b) High-level phylogenetic analysis using developmental sequences: the Cambrian †Martinssonia elongata, †Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Struct Dev 39:154–173CrossRefGoogle Scholar
  88. Hautier L, Weisbecker V, Sánchez-Villagra MR, Goswami A, Asher RJ (2010) Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proc Natl Acad Sci USA 107:18903–18908CrossRefGoogle Scholar
  89. Head JJ, David Polly P (2007) Dissociation of somatic growth from segmentation drives gigantism in snakes. Biol Lett 3:296–298CrossRefGoogle Scholar
  90. Hoare RD (1991) Ontogeny and variation in Glyptopleura costata (McCoy) (Ostracoda: Mississippian, Chesterian) from Ohio. J Paleontol 65:760–766Google Scholar
  91. Hou X, Williams M, Siveter DaJ, Aldridge RJ, Sansom RS (2010) Soft-part anatomy of the early Cambrian bivalved arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida. Proc R Soc B 277:1835–1841CrossRefGoogle Scholar
  92. Hughes NC (2007) The evolution of trilobite body patterning. Annu Rev Earth Planet Sci 35:401–434CrossRefGoogle Scholar
  93. Hughes NC, Minelli A, Fusco G (2006) The ontogeny of trilobite segmentation: a comparative approach. Paleobiology 32:602–627CrossRefGoogle Scholar
  94. Hughes NC, Haug JT, Waloszek D (2008) Basal euarthropod development: a fossil-based perspective. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 281–298CrossRefGoogle Scholar
  95. Hugi J, Sánchez-Villagra MR (2012) Life history and skeletal adaptations in the Galapagos marine iguana (Amblyrhynchus cristatus) as reconstructed with bone histological data: a comparative study of iguanines. J Herpetol 46:312–324CrossRefGoogle Scholar
  96. Hugi J, Scheyer TM, Sander PM, Klein N, Sánchez-Villagra MR (2011) Long bone microstructure gives new insights into the life of pachypleurosaurids from the Middle Triassic of Monte San Giorgio, Switzerland/Italy. C R Palevol 10:413–426CrossRefGoogle Scholar
  97. Humphrey LT (2010) Weaning behaviour in human evolution. Semin Cell Dev Biol 21:453–461CrossRefGoogle Scholar
  98. Humphrey LT, Dean MC, Jeffries TE, Penn M (2008) Unlocking evidence of early diet from tooth enamel. Proc Natl Acad Sci USA 105:6834–6839CrossRefGoogle Scholar
  99. Hunt G (2007) The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc Natl Acad Sci USA 104:18404–18408CrossRefGoogle Scholar
  100. Hutchinson JMC (1989) Control of gastropod shell shape: the role of the preceding whorl. J Theor Biol 140:431–444CrossRefGoogle Scholar
  101. Huxley JS, Teissier G (1936a) Terminology of relative growth. Nature 137:780–781CrossRefGoogle Scholar
  102. Huxley JS, Teissier G (1936b) Terminologie et notation dans la description de la croissance relative. C R Seances Soc Biol Fil 121:934–937Google Scholar
  103. Illert C (1990) Nipponites mirabilis: a challenge to seashell theory. Nuovo Cimento Soc Ital Fis D 12:1405–1421CrossRefGoogle Scholar
  104. Jablonski D (2007) Scale and hierarchy in macroevolution. Palaeontology 50:87–109CrossRefGoogle Scholar
  105. Jablonski D (2010) Origination patterns and multi-level processes in macroevolution. In: Pigliucci M, Müller GB (eds) Evolution, the extended synthesis. MIT Press, Cambridge, MA, pp 335–354Google Scholar
  106. Kaneko K (2011) Characterization of stem cells and cancer cells on the basis of gene expression stability, plasticity, and robustness. BioEssays 33:403–413CrossRefGoogle Scholar
  107. Kauffman SA (1993) The origin of order: self-organization and selection in evolution. Oxford University Press, New YorkGoogle Scholar
  108. Kavanagh KD, Evans AR, Jernvall J (2007) Predicting evolutionary patterns of mammalian teeth from development. Nature 449:427–432CrossRefGoogle Scholar
  109. Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Spec Pap Palaeontol 17:1–94Google Scholar
  110. Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420–8427CrossRefGoogle Scholar
  111. Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst 39:115–132CrossRefGoogle Scholar
  112. Klug C (2001) Life-cycles of Emsian and Eifelian ammonoids (Devonian). Lethaia 34:215–233CrossRefGoogle Scholar
  113. Köhler M, Moyà-Solà S (2009) Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc Natl Acad Sci USA 106:20354–20358CrossRefGoogle Scholar
  114. Kolb C, De Vos J, Scheyer TM, Sánchez-Villagra MR (2011) The ontogeny of bone histology in the dwarfed island deer Candiacervus from the Late Pleistocene of Crete. In: Program and Abstracts of the 9th EAVP Annual Meeting, pp 31–32Google Scholar
  115. Korn D (2012) Quantification of ontogenetic allometry in ammonoids. Evol Dev 14:501–514CrossRefGoogle Scholar
  116. Kuratani S (2012) Evolution of the vertebrate jaw from developmental perspectives. Evol Dev 14:76–92Google Scholar
  117. Landman NH, Waage KM (1986) Shell abnormalities in scaphitid ammonites. Lethaia 19:211–224CrossRefGoogle Scholar
  118. Lapique L (1907) Tableau général des poids somatiques et encéphaliques dans les espèces animales. Bull Mémo Soc Anthropol Paris, 5e sér 8:248–269CrossRefGoogle Scholar
  119. Lee D, Chatterton BDE (1997) Three new proetide trilobite larvae from the Lower Ordovician Garden City Formation in southern Idaho. J Paleontol 71:434–441Google Scholar
  120. Lee D, Chatterton BDE (2003) Protaspides of Leiostegium and their implications for membership of the order Corynexochida. Palaeontology 46:431–445CrossRefGoogle Scholar
  121. Lee D, Chatterton BDE (2005) Protaspides of Upper Cambrian Aphelaspis (Ptychopariida, Trilobita) and related species with their taxonomic implications. Palaeontology 48:1351–1375CrossRefGoogle Scholar
  122. Leroi AM (2000) The scale independence of evolution. Evol Dev 2:67–77CrossRefGoogle Scholar
  123. Lerosey-Aubril R, Feist R (2005a) First Carboniferous protaspid larvae (Trilobita). J Paleontol 79:702–718CrossRefGoogle Scholar
  124. Lerosey-Aubril R, Feist R (2005b) Ontogeny of a new cyrtosymboline trilobite from the Famennian of Morocco. Acta Palaeontol Pol 50:449–464Google Scholar
  125. Leutze WP (1958) Eurypterids from the Silurian Tymochtee Dolomite of Ohio. J Paleontol 32:937–942Google Scholar
  126. Li H, Huang Z, Gai J, Wu S, Zeng Y, Li Q, Wu R (2007) A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry. PLoS ONE 2:e1245CrossRefGoogle Scholar
  127. Linsley RM (1977) Some “laws” of gastropod shell form. Paleobiology 3:196–206Google Scholar
  128. Linsley RM (1978) Shell form and the evolution of gastropods. Am Sci 66:432–441Google Scholar
  129. Luo Z-X (2007) Transformation and diversification in the early mammalian evolution. Nature 450:1011–1019CrossRefGoogle Scholar
  130. Luo Z-X, Chen P-J, Li G, Chen M (2007) A new eutriconodont mammal and evolutionary development of early mammals. Nature 446:288–293CrossRefGoogle Scholar
  131. Maas A, Braun A, Dong X, Donoghue PCJ, Müller KJ, Olempska E, Repetski JE, Siveter DJ, Stein M, Waloszek D (2006) The ‘Orsten’: more than a Cambrian Konservat-Lagerstatte yielding exceptional preservation. Palaeoworld 15:266–282CrossRefGoogle Scholar
  132. Maas A, Waloszek D, Haug JT, Müller KJ (2007) A possible larval roundworm from the Cambrian ‘Orsten’ and its bearing on the phylogeny of Cycloneuralia. Mem Assoc Australas Palaeontol 34:499–519Google Scholar
  133. Maas A, Waloszek D, Haug JT, Müller KJ (2009) Loricate larvae (Scalidophora) from the Middle Cambrian of Australia. Mem Assoc Australas Palaeontol 37:281–302Google Scholar
  134. Maisey JG, de Carvalho MdGP (1995) First records of fossil sergestid decapods and fossil brachyuran crab larvae (Arthropoda, Crustacea), with remarks on some supposed palaemonid fossils, from the Santana Formation (Aptian-Albian, NE Brazil). Am Mus Novit 3132:1–17Google Scholar
  135. Maness TR, Kaesler RL (1987) Ontogenetic changes in the carapace of Tyrrhenocythere amnicola (Sars) a hemicytherid ostracode. Univ Kans Paleontol Contrib 118:1–15Google Scholar
  136. Marroig G, Cheverud JM (2004) Cranial evolution in sakis (Pithecia, Platyrrhini) I: interspecific differentiation and allometric patterns. Am J Phys Anthropol 125:266–278CrossRefGoogle Scholar
  137. Marroig G, Shirai LT, Porto A, de Oliveira FB, De Conto V (2009) The evolution of modularity in the mammalian skull II: evolutionary consequences. Evol Biol 36:136–148CrossRefGoogle Scholar
  138. Maynard Smith J, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution: a perspective from the Mountain Lake conference on development and evolution. Q Rev Biol 60:265–287CrossRefGoogle Scholar
  139. Mazzetta GV, Christiansen P, Fariña RA (2004) Giants and bizarres: body size of some southern South American Cretaceous dinosaurs. Hist Biol 65:1–13Google Scholar
  140. McGhee GR (1999) Theoretical morphology. Columbia University Press, New YorkGoogle Scholar
  141. McNamara KJ (1978) Paedomorphosis in Scottish olenellid trilobites (Early Cambrian). Palaeontology 21:635–655Google Scholar
  142. Mitgutsch C, Richardson MK, Jiménez R, Martín JE, Kondrashov P, de Bakker MAG, Sánchez-Villagra MR (2012) Circumventing the pentadactyly ‘constraint’: autopodial recruitment of pre-axial structures in true moles. Biol Lett 8:74–77CrossRefGoogle Scholar
  143. Monnet C, Bucher H (2005) New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Foss Strat 52:1–60Google Scholar
  144. Monnet C, Zollikofer CP, Bucher H, Goudemand N (2009) Three-dimensional morphometric ontogeny of mollusc shells by micro-computed tomography and geometric analysis. Palaeontol Electron 12:12AGoogle Scholar
  145. Morita R (1991a) Finite element analysis of a double membrane tube (DMS-tube) and its implication for gastropod shell morphology. J Morphol 207:81–92CrossRefGoogle Scholar
  146. Morita R (1991b) Mechanical constraints on aperture form in gastropods. J Morphol 207:93–102CrossRefGoogle Scholar
  147. Morita R (1993) Development mechanics of retractor muscles and the “Dead Spiral Model” in gastropod shell morphogenesis. N Jahrb Geol Paläontol Abh 190:191–217Google Scholar
  148. Morita R (2003) Why do univalve shells of gastropods coil so tightly? A head-foot guidance model of shell growth and its implication on developmental constraints. In: Sekimura T, Noji S, Ueno N, Maini PK (eds) Morphogenesis and pattern formation in biological systems: experiments and models. Springer, Tokyo, pp 345–354CrossRefGoogle Scholar
  149. Müller KJ, Hinz-Schallreuter I (1993) Palaeoscolecid worms from the Middle Cambrian of Australia. Palaeontology 36:549–592Google Scholar
  150. Müller KJ, Walossek D (1986) Arthropod larvae from the Upper Cambrian of Sweden. Trans R Soc Edinb Earth Sci 77:157–179CrossRefGoogle Scholar
  151. Müller KJ, Walossek D (1987) Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Foss Strat 19:1–124Google Scholar
  152. Müller KJ, Walossek D (1988) External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis. Foss Strat 23:1–70Google Scholar
  153. Müller J, Scheyer TM, Barrett P, Werneburg I, Head JJ, Ericson PGP, Pol D, Sánchez-Villagra MR (2010) Homeotic effects, somitogenesis, and the evolution of vertebral numbers in recent and fossil amniotes. Proc Natl Acad Sci USA 107:2118–2123CrossRefGoogle Scholar
  154. Murdock DJE, Donoghue PCJ (2011) Evolutionary origins of animal skeletal biomineralization. Cells Tissues Organs 194:98–102CrossRefGoogle Scholar
  155. Nützel A, Frýda J, Yancey TE, Anderson JR (2007) Larval shells of Late Palaeozoic naticopsid gastropods (Neritopsoidea: Neritimorpha) with a discussion of the early neritimorph evolution. Paläontol Z 81:213–228CrossRefGoogle Scholar
  156. O’Higgins P (2000) Quantitative approaches to the study of craniofacial growth and evolution: advances in morphometric techniques: development, growth and evolution. Academic Press, San DiegoGoogle Scholar
  157. Okamoto T (1988a) Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:35–52Google Scholar
  158. Okamoto T (1988b) Developmental regulation and morphological saltation in the heteromorph ammonite Nipponite. Paleobiology 14:272–286Google Scholar
  159. Olempska E (2004) Late Triassic spinicaudatan crustaceans from southwestern Poland. Acta Palaeontol Pol 49:429–442Google Scholar
  160. Olsson L, Levit GS, Hoßfeld U (2010) Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions. Naturwissenschaften 97:951–969CrossRefGoogle Scholar
  161. Oster GF, Shubin N, Murray JD, Alberch P (1988) Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution 42:862–884CrossRefGoogle Scholar
  162. Peterson KJ, Summons RE, Donoghue PCJ (2007) Molecular palaeobiology. Palaeontology 50:775–809CrossRefGoogle Scholar
  163. Pigliucci M, Müller GB (2010) Evolution. The extended synthesis. MIT Press, Cambridge, MAGoogle Scholar
  164. Polly PD (2007) Development with a bite. Nature 449:413–415CrossRefGoogle Scholar
  165. Ponce de Léon MS, Zollikofer CP (2001) Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature 412:534–538CrossRefGoogle Scholar
  166. Raff RA (2007) Written in stone: fossils, genes, and evo–devo. Nat Rev Genet 8:911–920CrossRefGoogle Scholar
  167. Raff RA, Kaufman TC (1983) Embryos, genes, and evolution: the developmental-genetic basis of evolutionary change. Macmillan, New YorkGoogle Scholar
  168. Raup DM (1961) The geometry of coiling in gastropods. Proc Natl Acad Sci USA 47:602–609CrossRefGoogle Scholar
  169. Raup DM (1966) Geometric analysis of shell coiling: some general problems. J Paleontol 40:1178–1190Google Scholar
  170. Raup DM, Michelson A (1965) Theoretical morphology of the coiled shell. Science 147:1294–1295CrossRefGoogle Scholar
  171. Rensch B (1959) Evolution above the species level. Wiley, New YorkGoogle Scholar
  172. Renvoisé E, Evans AR, Jebrane A, Labruère C, Laffont R, Montuire S (2009) Evolution of mammal tooth patterns: new insights from a developmental prediction model. Evolution 63:1327–1340CrossRefGoogle Scholar
  173. Revell LJ (2007) The G matrix under fluctuating correlational mutation and selection. Evolution 61:1857–1872CrossRefGoogle Scholar
  174. Rice SH (1998) The bio-geometry of mollusc shells. Paleobiology 24:133–149Google Scholar
  175. Rieber H (1972) Die Triasfauna der Tessiner Kalkalpen. XXII. Cephalopoden aus der Grenzbitumenzone (Mittelere Trias) des Monte San Giorgio (Kanton Tessin, Schweiz). Schweiz Paläontol Abh 93:1–95Google Scholar
  176. Romano C, Kogan I, Jenks J, Jerjen I, Brinkmann W (2012) Saurichthys and other fossils from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA) with a discussion of saurichthyid palaeogeography and evolution. Bull Geosci 87:543–570CrossRefGoogle Scholar
  177. Salazar-Ciudad I (2006) Developmental constraints vs. variational properties: how pattern formation can help to understand evolution and development? J Exp Zool B 306B:107–125CrossRefGoogle Scholar
  178. Salazar-Ciudad I, Jernvall J (2010) A computational model of teeth and the developmental origins of morphological variation. Nature 464:583–586CrossRefGoogle Scholar
  179. Sánchez-Villagra MR (2010) Developmental palaeontology in synapsids: the rock record of ontogeny in mammals and their closest relatives. Proc R Soc B 277:1139–1147CrossRefGoogle Scholar
  180. Sánchez-Villagra MR (2012) Embryos in deep time. University of California Press, San FranciscoCrossRefGoogle Scholar
  181. Sander PM, Klein N (2005) Developmental plasticity in the life history of a prosauropod dinosaur. Science 310:1800–1802CrossRefGoogle Scholar
  182. Savazzi E (1990) Biological aspects of theoretical shell morphology. Lethaia 23:195–212CrossRefGoogle Scholar
  183. Scheyer TM (2007) Skeletal histology of the dermal armor of the Placodontia: the occurrence of ‘postcranial fibro-cartilaginous bone’ and its developmental implications. J Anat 211:737–753CrossRefGoogle Scholar
  184. Scheyer TM, Klein N, Sander PM (2010) Developmental palaeontology of Reptilia as revealed by histological studies. Semin Cell Dev Biol 21:462–470CrossRefGoogle Scholar
  185. Scheyer TM, Neenan JM, Renesto S, Saller F, Hagdorn H, Furrer H, Rieppel O, Tintori A (2011) Revised paleoecology of placodonts—with a comment on ‘The shallow marine placodont Cyamodus of the central European Germanic Basin: its evolution, Paleobiologygeography and paleoecology’ by CG Diedrich. Hist Biol 24:257–267Google Scholar
  186. Scheyer TM, Werneburg I, Mitgutsch C, Delfino M, Sánchez-Villagra MR (2012) Three ways to tackle the turtle: integrating fossils, comparative embryology and microanatomy. In: Brinkman DB, Holroyd PA, Gardner JD (eds) Morphology and evolution of turtles: origin and early diversification: vertebrate Paleobiologylogy and paleoanthropology. Springer, Dordrecht, pp 63–70Google Scholar
  187. Schmalhausen II (1949) Factors of evolution: the theory of stabilizing selection. Blakiston, PhiladelphiaGoogle Scholar
  188. Schmid L (2012) Reconstructing the molecular underpinnings of morphological diversification. A case study of the Triassic fish Saurichthys. In: Asher RJ, Müller J (eds) From clone to bone: the synergy of morphological and molecular tools in Paleobiologylogy. Cambridge University Press, Cambridge, pp 135–165CrossRefGoogle Scholar
  189. Schmid L, Sánchez-Villagra MR (2010) The potential genetic bases of morphological evolution in the Triassic fish Saurichthys. J Exp Zool B 314B:519–526CrossRefGoogle Scholar
  190. Schoch RR (2006) Skull ontogeny: developmental patterns of fishes conserved aross major developmental stages. Evol Dev 8:524–536CrossRefGoogle Scholar
  191. Schoch RR (2009) Developmental evolution as a response to diverse lake habitats in Paleozoic amphibians. Evolution 63:2738–2749CrossRefGoogle Scholar
  192. Sears KE, Goswami A, Flynn JJ, Niswander LA (2007) The correlated evolution of Runx2 tandem repeats, transcriptional activity and facial length in Carnivora. Evol Dev 9:555–565CrossRefGoogle Scholar
  193. Seilacher A (1970) Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393–396CrossRefGoogle Scholar
  194. Severtsov AN (1912) Etiudy po teorii evoliutsii: individual’noe razvitie i evoliutsiia. [Studies on the theory of evolution: individual development and evolution]. Gosizdat, KievGoogle Scholar
  195. Shirai LT, Marroig G (2010) Skull modularity in neotropical marsupials and monkeys: size variation and evolutionary constraint and flexibility. J Exp Zool B 314B:663–683CrossRefGoogle Scholar
  196. Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823CrossRefGoogle Scholar
  197. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  198. Smith RJ (2000) Morphology and ontogeny of Cretaceous ostracods with preserved appendages from Brazil. Palaeontology 43:63–98CrossRefGoogle Scholar
  199. Spjeldnaes N (1951) Ontogeny of Beyrichia jonesi Boll. J Paleontol 26:745–755Google Scholar
  200. Steiner M, Zhu M, Li G, Qian Y, Erdtmann B (2004) New Early Cambrian bilaterian embryos and larvae from China. Geology 32:833–836CrossRefGoogle Scholar
  201. Stolarski J, Meibom A, Przeniosto R, Mazur M (2007) A Cretaceous Scleractinian coral with a calcitic skeleton. Science 318:92–94CrossRefGoogle Scholar
  202. Sumrall CD, Wray GA (2007) Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33:149–163CrossRefGoogle Scholar
  203. Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger J–J, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A 83:195–202CrossRefGoogle Scholar
  204. Tanaka G, Smith RJ, Siveter DJ, Parker AR (2009) Three-dimensionally preserved decapod larval compound eyes from the Cretaceous Santana Formation of Brazil. Zool Sci 26:846–850CrossRefGoogle Scholar
  205. Tasch P (1961) Pemphilimnadiopseidae, a new family of fossil conchostracans. J Paleontol 35:1117–1120Google Scholar
  206. Thewissen J, Cooper L, Behringer R (2012) Developmental biology enriches paleontology. J Vertebr Paleontol 32:1223–1234CrossRefGoogle Scholar
  207. Thompson D’A W (1917) On growth and form, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  208. Tinn O, Meidla T (2003) Ontogeny and thanatocoenoses of early Middle Ordovician palaeocope ostracode species Brezelina palmata (Krause, 1889) and Ogmoopsis bocki (Opik, 1935). J Paleontol 77:64–72CrossRefGoogle Scholar
  209. Tinn O, Meidla T (2004) Phylogenetic relationships of Early-Middle Ordovician ostracods of Baltoscandia. Palaeontol 47:199–221CrossRefGoogle Scholar
  210. Tokita M, Iwai N (2010) Development of the pseudothumb in frogs. Biol Lett 6:517–520CrossRefGoogle Scholar
  211. Tripp RP, Evitt WR (1986) Silicified trilobites of the family Asaphidae from the Middle Ordovician of Virginia. Palaeontology 29:705–724Google Scholar
  212. Ubukata T (2003) Pattern of growth rate around aperture and shell form in Bivalvia: a theoretical morphological study. Paleobiology 29:480–491CrossRefGoogle Scholar
  213. Urdy S (2012) On the evolution of morphogenetic models: mechano-chemical interactions and an integrated view of cell differentiation, growth, pattern formation and morphogenesis. Biol Rev 87:786–803CrossRefGoogle Scholar
  214. Urdy S, Chirat R (2006) Snail shell coiling (re-)evolution and the evo–devo revolution. J Zool Syst Evol Res 44:1–7CrossRefGoogle Scholar
  215. Urdy S, Goudemand N, Bucher H, Chirat R (2010a) Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. J Exp Zool B 314B:280–302CrossRefGoogle Scholar
  216. Urdy S, Goudemand N, Bucher H, Chirat R (2010b) Growth dependent phenotypic variation of molluscan shell shape: implications for allometric data interpretation. J Exp Zool B 314B:303–326CrossRefGoogle Scholar
  217. Vassallo AI, Mora MS (2007) Interspecific scaling and ontogenetic growth patterns of the skull in living and fossil ctenomyid and octodontid rodents (Caviomorpha: Octodontoidea). In: Kelt DA, Lessa E, Salazar-Bravo JA, Patton JL (eds) The quintessential naturalist: honouring the life and legacy of Oliver P. Pearson. University of California Publications in Zoology, Berkeley, pp 945–968Google Scholar
  218. Vermeij GJ (2002) Characters in context: molluscan shells and the forces that mold them. Paleobiology 28:41–54CrossRefGoogle Scholar
  219. Verzi DH (2008) Phylogeny and adaptive diversity of rodents of the family Ctenomyidae (Caviomorpha): delimiting lineages and genera in the fossil record. J Zool 274:386–394CrossRefGoogle Scholar
  220. Verzi DH, Álvarez A, Olivares I, Morgan CC, Vassallo AI (2010) Ontogenetic trajectories of key morphofunctional cranial traits in South American subterranean ctenomyid rodents. J Mammal 91:1508–1516CrossRefGoogle Scholar
  221. Vrba ES (1983) Macroevolutionary trends: new perspective on the roles of adaptation and incidental effect. Science 221:387–389CrossRefGoogle Scholar
  222. Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution 50:967–976CrossRefGoogle Scholar
  223. Wagner GP, Larsson HCE (2003) What is the promise of developmental evolution? III. The crucible of developmental evolution. J Exp Zool B 300B:1–4CrossRefGoogle Scholar
  224. Wake DB (1991) Homoplasy: the result of natural selection, or evidence of design limitations? Am Nat 138:543–567CrossRefGoogle Scholar
  225. Walossek D (1993) The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Foss Strat 32:1–202Google Scholar
  226. Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446CrossRefGoogle Scholar
  227. Webster G, Goodwin BC (1982) The origin of species: a structuralist approach. J Soc Biol Struct 5:15–47CrossRefGoogle Scholar
  228. Webster M, Zelditch ML (2011) Modularity of a Cambrian ptychoparioid trilobite cranidium. Evol Dev 13:96–109CrossRefGoogle Scholar
  229. Weitschat W (1983a) Ostracoden (O. Myodocopida) mit Weichkörper-Erhaltung aus der Unter-Trias von Spitzbergen. Paläontol Z 57:309–323CrossRefGoogle Scholar
  230. Weitschat W (1983b) On Triadocypris spitzbergensis Weitschat. Stereo Atlas Ostracod Shells 10:127–138Google Scholar
  231. Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367CrossRefGoogle Scholar
  232. West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592CrossRefGoogle Scholar
  233. Westermann GEG (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). N Jahrb Geol Paläontol Abh 124:289–312Google Scholar
  234. Williams SH, Kay RF (2001) A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. J Mammal Evol 8:207–229CrossRefGoogle Scholar
  235. Wilson LAB (2012) Geographic variation in the greater Japanese shrew-mole Urotrichus talpoides: combining morphological and chromosomal patterns. Mammal Biol. doi: 10.1016/j.mambio.2012.09.003
  236. Wilson LAB (2013) The contribution of developmental palaeontology to extensions of evolutionary theory. Acta Zool (Stockholm) 94. In press. doi: 10.1111/j.1463-6395.2011.00539.x
  237. Wilson LAB, Sánchez-Villagra MR (2010) Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proc R Soc B 277:1227–1234CrossRefGoogle Scholar
  238. Wilson LAB, Madden RH, Kay RF, Sánchez-Villagra MR (2012) Testing a developmental model in the fossil record: molar proportions in South American ungulates. Paleobiology 38:308–321CrossRefGoogle Scholar
  239. Wroe S, Crowther M, Dortch J, Chong J (2004) The size of the largest marsupial and why it matters. Proc R Soc B 271:34–36CrossRefGoogle Scholar
  240. Young NM, Wagner GP, Hallgrímsson B (2010) Development and the evolvability of human limbs. Proc Natl Acad Sci USA 107:3400–3405CrossRefGoogle Scholar
  241. Zhang X (2007) Phosphatized bradoriids (Arthropoda) from the Cambrian of China. Palaeontogr Abt A 281:93–173Google Scholar
  242. Zhang X, Pratt BR (1993) Early Cambrian ostracode larvae with a univalved carapace. Science 262:93–94CrossRefGoogle Scholar
  243. Zhang X, Pratt BR (1999) Early Cambrian trilobite larvae and ontogeny of Ichangia ichangensis Chang, 1957 (Protolenidae) from Henan, China. J Paleontol 73:117–128Google Scholar
  244. Zhang X, Maas A, Haug JT, Siveter DJ, Waloszek D (2010) A eucrustacean metanauplius from the Lower Cambrian. Curr Biol 20:1075–1079CrossRefGoogle Scholar
  245. Zhang X, Pratt BR, Shen C (2011) Embryonic development of a middle Cambrian (500 myr old) scalidophoran worm. J Paleontol 85:898–903CrossRefGoogle Scholar
  246. Zhu J, Zhang YT, Alber MS, Newman SA (2010) Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS ONE 5:e10892CrossRefGoogle Scholar
  247. Zollikofer CP, Ponce de Leόn MSP (2010) The evolution of hominin ontogenies. Semin Cell Dev Biol 21:441–452CrossRefGoogle Scholar

Copyright information

© Konrad Lorenz Institute for Evolution and Cognition Research 2013

Authors and Affiliations

  • Séverine Urdy
    • 1
  • Laura A. B. Wilson
    • 2
    • 3
  • Joachim T. Haug
    • 4
  • Marcelo R. Sánchez-Villagra
    • 3
  1. 1.Center for Mathematics and Computer Science (CWI), Netherlands Institute for Systems BiologyAmsterdamThe Netherlands
  2. 2.Kyoto University MuseumKyotoJapan
  3. 3.Paläontologisches Institut und Museum der Universität ZürichZurichSwitzerland
  4. 4.Zoologisches Institut und Museum, Cytologie und EvolutionsbiologieErnst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany

Personalised recommendations