Biological Theory

, Volume 7, Issue 3, pp 189–195 | Cite as

Is Non-genetic Inheritance Just a Proximate Mechanism? A Corroboration of the Extended Evolutionary Synthesis

  • Alex Mesoudi
  • Simon Blanchet
  • Anne Charmantier
  • Étienne Danchin
  • Laurel Fogarty
  • Eva Jablonka
  • Kevin N. Laland
  • Thomas J. H. Morgan
  • Gerd B. Müller
  • F. John Odling-Smee
  • Benoît Pujol
Long Article

Abstract

What role does non-genetic inheritance play in evolution? In recent work we have independently and collectively argued that the existence and scope of non-genetic inheritance systems, including epigenetic inheritance, niche construction/ecological inheritance, and cultural inheritance—alongside certain other theory revisions—necessitates an extension to the neo-Darwinian Modern Synthesis (MS) in the form of an Extended Evolutionary Synthesis (EES). However, this argument has been challenged on the grounds that non-genetic inheritance systems are exclusively proximate mechanisms that serve the ultimate function of calibrating organisms to stochastic environments. In this paper we defend our claims, pointing out that critics of the EES (1) conflate non-genetic inheritance with early 20th-century notions of soft inheritance; (2) misunderstand the nature of the EES in relation to the MS; (3) confuse individual phenotypic plasticity with trans-generational non-genetic inheritance; (4) fail to address the extensive theoretical and empirical literature which shows that non-genetic inheritance can generate novel targets for selection, create new genetic equilibria that would not exist in the absence of non-genetic inheritance, and generate phenotypic variation that is independent of genetic variation; (5) artificially limit ultimate explanations for traits to gene-based selection, which is unsatisfactory for phenotypic traits that originate and spread via non-genetic inheritance systems; and (6) fail to provide an explanation for biological organization. We conclude by noting ways in which we feel that an overly gene-centric theory of evolution is hindering progress in biology and other sciences.

Keywords

Biological organization Cultural evolution Epigenetic inheritance Extended Evolutionary Synthesis Modern Synthesis Niche construction Non-genetic inheritance 

References

  1. Aoki K, Wakano JY, Feldman MW (2005) The emergence of social learning in a temporally changing environment: a theoretical model. Curr Anthropol 46:334–340CrossRefGoogle Scholar
  2. Ben-Ari Y (2008) Neuro-archaeology: pre-symptomatic architecture and signature of neurological disorders. Trends Neurosci 31:626–636CrossRefGoogle Scholar
  3. Ben-Ari Y, Spitzer NC (2010) Phenotypic checkpoints regulate neuronal development. Trends Neurosci 33:485–492CrossRefGoogle Scholar
  4. Bonduriansky R (2012) Rethinking heredity, again. Trends Ecol Evol 27:330–336CrossRefGoogle Scholar
  5. Bonduriansky R, Day T (2009) Non-genetic inheritance and its evolutionary implications. Ann Rev Ecol Evol Syst 40:103–125CrossRefGoogle Scholar
  6. Bouckaert R, Lemey P, Dunn M, Greenhill SJ, Alekseyenko AV, Drummond AJ, Gray RD, Suchard MA, Atkinson QD (2012) Mapping the origins and expansion of the Indo-European language family. Science 337:957–960CrossRefGoogle Scholar
  7. Boyd R, Richerson PJ (1985) Culture and the evolutionary process. University of Chicago Press, ChicagoGoogle Scholar
  8. Boyd R, Richerson PJ, Henrich J (2011) The cultural niche: why social learning is essential for human adaptation. PNAS 108:10918–10925CrossRefGoogle Scholar
  9. Campbell DT (1960) Blind variation and selective retentions in creative thought as in other knowledge processes. Psychol Rev 67:380–400CrossRefGoogle Scholar
  10. Cavalli-Sforza LL, Feldman MW (1973) Cultural versus biological inheritance: phenotypic transmission from parents to children. Am J Hum Genet 25:618–637Google Scholar
  11. Champagne FA (2008) Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocr 29:386–397CrossRefGoogle Scholar
  12. Danchin D, Wagner RH (2010) Inclusive heritability: combining genetic and non-genetic information to study animal behavior and culture. Oikos 119:210–218CrossRefGoogle Scholar
  13. Danchin E, Giraldeau LA, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491CrossRefGoogle Scholar
  14. Danchin E, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486CrossRefGoogle Scholar
  15. Dawkins R (2004) Extended phenotype–but not too extended. A reply to Laland, Turner and Jablonka. Biol Phil 19:377–396CrossRefGoogle Scholar
  16. Day T, Bonduriansky R (2011) A unified approach to the evolutionary consequences of genetic and non-genetic inheritance. Am Nat 178:E18–E36CrossRefGoogle Scholar
  17. Dickins TE, Barton RA (2012) Reciprocal causation and the proximate–ultimate distinction. Biol Phil (in press)Google Scholar
  18. Dickins TE, Dickins BJA (2007) Designed calibration: naturally selected flexibility, not non-genetic inheritance. Behav Brain Sci 30:368–369CrossRefGoogle Scholar
  19. Dickins TE, Dickins BJA (2008) Mother Nature’s tolerant ways: why non-genetic inheritance has nothing to do with evolution. New Ideas Psychol 26:41–54CrossRefGoogle Scholar
  20. Dickins TE, Rahman Q (2012) The extended evolutionary synthesis and the role of soft inheritance in evolution. Proc R Soc B 279:2913–2921CrossRefGoogle Scholar
  21. Furrow RE, Christiansen FB, Feldman MW (2011) Environment-sensitive epigenetics and the heritability of complex diseases. Genetics 189:1377–1387CrossRefGoogle Scholar
  22. Galef BG, Laland KN (2005) Social learning in animals: empirical studies and theoretical models. Bioscience 55:489–499CrossRefGoogle Scholar
  23. Garcia J, Kimeldorf DJ, Koelling RA (1955) Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122:157–158Google Scholar
  24. Geoghegan JL, Spencer HG (2012) Population-epigenetic models of selection. Theor Popul Biol 81:232–242CrossRefGoogle Scholar
  25. Gerbault P, Liebert A, Itan Y, Powell A, Currat M, Burger J, Swallow DM, Thomas MG (2011) Evolution of lactase persistence: an example of human niche construction. Phil Trans R Soc B 366:863–877CrossRefGoogle Scholar
  26. Gray RD, Atkinson QD (2003) Language-tree divergence times support the Anatolian theory of Indo-European origin. Nature 426:435–439CrossRefGoogle Scholar
  27. Haig D (2007) Weismann rules! OK? epigenetics and the lamarckian temptation. Biol Phil 22:415–428CrossRefGoogle Scholar
  28. Hout M, Greeley A, Wilde MJ (2001) The demographic imperative in religious change in the United States. Am J Sociol 107:468–500CrossRefGoogle Scholar
  29. Huxley JS (1942) Evolution, the modern synthesis. Allen & Unwin, LondonGoogle Scholar
  30. Jablonka E (2012) Epigenetic inheritance and plasticity: the responsive germline. Prog Biophys Mol Biol. http://dx.doi.org/10.1016/j.pbiomolbio.2012.08.014
  31. Jablonka E, Lamb MJ (2005) Evolution in four dimensions. MIT Press, CambridgeGoogle Scholar
  32. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176CrossRefGoogle Scholar
  33. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GHT, Wong AHC, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41:240–245CrossRefGoogle Scholar
  34. Kendal JR (2012) Cultural niche construction and human learning environments: investigating sociocultural perspectives. Biol Theor 6:241–250CrossRefGoogle Scholar
  35. Kirby S, Cornish H, Smith K (2008) Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language. PNAS 105:10681–10686CrossRefGoogle Scholar
  36. Labov W (2001) Principles of linguistic change (II): social factors. Blackwell, MaldenGoogle Scholar
  37. Lachmann M, Jablonka E (1996) The inheritance of phenotypes: an adaptation to fluctuating environments. J Theor Biol 181:1–9CrossRefGoogle Scholar
  38. Laland KN, Plotkin HC (1990) Social learning and social transmission of foraging information in Norway rats (Rattus norvegicus). Anim Learn Behav 18:246–251CrossRefGoogle Scholar
  39. Laland KN, Kumm J, Feldman MW (1995) Gene-culture coevolutionary theory. Curr Anthropol 36:131–156CrossRefGoogle Scholar
  40. Laland KN, Odling-Smee J, Myles S (2010) How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Genet 11:137–148CrossRefGoogle Scholar
  41. Laland KN, Sterelny K, Odling-Smee J, Hoppitt W, Uller T (2011) Cause and effect in biology revisited: is Mayr’s proximate–ultimate dichotomy still useful? Science 334:1512–1516CrossRefGoogle Scholar
  42. Layton R (2010) Why social scientists don’t like Darwin and what can be done about it. J Evol Psychol 8:139–152CrossRefGoogle Scholar
  43. Lefebvre L (1995) The opening of milk bottles by birds: evidence for accelerating learning rates, but against the wave-of-advance model of cultural transmission. Behav Process 34:43–53CrossRefGoogle Scholar
  44. Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18CrossRefGoogle Scholar
  45. Lorenz K (1969) Innate bases of learning. In: Pribram K (ed) On the biology of learning. Harcourt, New York, pp 13–91Google Scholar
  46. Mameli M (2004) Nongenetic selection and nongenetic inheritance. Brit J Phil Sci 55:35–71CrossRefGoogle Scholar
  47. Mayr E, Provine W (eds) (1980) The evolutionary synthesis. Harvard University Press, CambridgeGoogle Scholar
  48. Mery F, Varela SAM, Danchin E, Blanchet S, Parejo D, Coolen I, Wagner RH (2009) Public versus personal information for mate copying in an invertebrate. Curr Biol 19:730–734CrossRefGoogle Scholar
  49. Mesoudi A (2011) Cultural evolution: how Darwinian theory can explain human culture and synthesize the social sciences. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  50. Mesoudi A, Laland KN (2007) Culturally transmitted paternity beliefs and the evolution of human mating behaviour. Proc R Soc B 274:1273–1278CrossRefGoogle Scholar
  51. Müller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:943–949CrossRefGoogle Scholar
  52. Odling Smee FJ, Laland KN, Feldman M (2003) Niche construction. Princeton University Press, PrincetonGoogle Scholar
  53. Pagel M (2009) Human language as a culturally transmitted replicator. Nat Rev Genet 10:405–415Google Scholar
  54. Pigliucci M, Müller GB (2010) Evolution: the extended synthesis. MIT Press, CambridgeGoogle Scholar
  55. Richerson PJ, Boyd R (2005) Not by genes alone. University of Chicago Press, ChicagoGoogle Scholar
  56. Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373CrossRefGoogle Scholar
  57. Scott-Phillips TC, Dickins TE, West SA (2011) Evolutionary theory and the ultimate–proximate distinction in the human behavioral sciences. Perspect Psychol Sci 6:38–47CrossRefGoogle Scholar
  58. Shapiro JA (2011) Evolution: a view from the 21st century. FT Press Science, Upper Saddle River, NJGoogle Scholar
  59. Whiten A, Goodall J, McGrew WC, Nishida T, Reynolds V, Sugiyama Y, Tutin CEG, Wrangham RW, Boesch C (1999) Cultures in chimpanzees. Nature 399:682–685CrossRefGoogle Scholar

Copyright information

© Konrad Lorenz Institute for Evolution and Cognition Research 2013

Authors and Affiliations

  • Alex Mesoudi
    • 1
  • Simon Blanchet
    • 2
    • 3
  • Anne Charmantier
    • 4
  • Étienne Danchin
    • 3
  • Laurel Fogarty
    • 5
  • Eva Jablonka
    • 6
  • Kevin N. Laland
    • 7
  • Thomas J. H. Morgan
    • 7
  • Gerd B. Müller
    • 8
  • F. John Odling-Smee
    • 9
  • Benoît Pujol
    • 3
  1. 1.Department of AnthropologyDurham UniversityDurhamUK
  2. 2.CNRS; Station d’Écologie Expérimentale du CNRS à MoulisMoulisFrance
  3. 3.EDB (Laboratoire Évolution & Diversité Biologique)CNRS, UPS, ENFA, UMR 5174ToulouseFrance
  4. 4.CNRS; Centre d’Écologie Fonctionnelle et Évolutive, UMR 5175MontpellierFrance
  5. 5.Department of BiologyStanford UniversityStanfordUSA
  6. 6.The Cohn Institute for the History and Philosophy of Science and IdeasTel-Aviv UniversityTel-AvivIsrael
  7. 7.School of BiologyUniversity of St. AndrewsSt. Andrews, FifeUK
  8. 8.Department of Theoretical BiologyUniversity of ViennaViennaAustria
  9. 9.Mansfield CollegeUniversity of OxfordOxfordUK

Personalised recommendations