Advertisement

Biological Theory

, Volume 6, Issue 1, pp 80–88 | Cite as

A Mixed Self: The Role of Symbiosis in Development

  • Thomas Pradeu
Original Paper

Abstract

Since the 1950s, the common view of development has been internalist: development is seen as the result of the unfolding of potentialities already present in the egg cell. In this article, I show that this view is incorrect because of the crucial influence of the environment on development. I focus on a fascinating example, that of the role played by symbioses in development, especially bacterial symbioses, a phenomenon found in virtually all organisms (plants, invertebrates, and vertebrates). I claim that we must consequently modify our conception of the boundaries of the developing entity, and I show how immunology can help us in accomplishing this task. I conclude that the developing entity encompasses many elements traditionally seen as “foreign,” while I reject the idea that there is no possible distinction between the organism and its environment.

Keywords

Bacteria Development Internalism Organism Organogenesis Self Symbiosis 

Notes

Acknowledgments

I want to thank Lucie Laplane, Michel Morange, Antonine Nicoglou, Frédérique Théry, and Michel Vervoort for excellent and fruitful interactions within the “Boundaries of Development” research group at the IHPST. I also want to thank Gérard Eberl, Scott Gilbert, and Peter Godfrey-Smith for useful discussions, as well as Lucie Laplane, Michel Morange, Michel Vervoort, Francesca Merlin, and Hannah-Louise Clark for their comments on the manuscript.

References

  1. Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic, Dordrecht/NorwellGoogle Scholar
  2. Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606CrossRefGoogle Scholar
  3. Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2(2):e14:0139–0147Google Scholar
  4. Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S (2009) Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 4(9):e6958CrossRefGoogle Scholar
  5. Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507–512CrossRefGoogle Scholar
  6. Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230CrossRefGoogle Scholar
  7. Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17(8):348–354CrossRefGoogle Scholar
  8. Bry L, Falk PG, Midtvedt T, Gorgon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380–1383CrossRefGoogle Scholar
  9. Burnet FM (1969) Self and notself. Cambridge University Press, CambridgeGoogle Scholar
  10. Crespi M, Frugier F (2008) De novo organ formation from differentiated cells: root nodule organogenesis. Sci Signal 1:re11CrossRefGoogle Scholar
  11. Davidson SK, Stahl DA (2008) Selective recruitment of bacteria during embryogenesis of an earthworm. ISME J 2:510–518CrossRefGoogle Scholar
  12. Dedeine F et al (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98(11):6247—6252Google Scholar
  13. Eberl G (2005) Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol 5:413–420CrossRefGoogle Scholar
  14. Eberl G (2007) From induced to programmed lymphoid tissues: the long road to preempt pathogens. Trends Immunol 28(10):423–428CrossRefGoogle Scholar
  15. Eberl G (2010) A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol 3(5):450–460CrossRefGoogle Scholar
  16. Eberl G, Lochner M (2009) The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol 2(6):478–485CrossRefGoogle Scholar
  17. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140(6):859–870CrossRefGoogle Scholar
  18. Gilbert SF (2001) Ecological developmental biology: biology meets the real world. Dev Biol 233:1–12CrossRefGoogle Scholar
  19. Gilbert SF (2002) The genome in its ecological context. Ann N Y Acad Sci 981:202–218CrossRefGoogle Scholar
  20. Gilbert SF (2005) Mechanisms for the environmental regulation of gene expression: ecological aspects of animal development. J Biosci 30:101–110CrossRefGoogle Scholar
  21. Gilbert SF (2010) Developmental biology, 9th edn. Sinauer Associates, SunderlandGoogle Scholar
  22. Gilbert SF (2011) Expanding the temporal dimensions of developmental biology: the role of environmental agents in establishing adult-onset phenotypes. Biol Theory 6(1). doi: 10.1007/s13752-011-0008-0
  23. Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine and evolution. Sinauer Associates, SunderlandGoogle Scholar
  24. Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118CrossRefGoogle Scholar
  25. Griffiths PE (2009) In what sense does “nothing in biology make sense except in the light of evolution”? Acta Biotheor 57:11–32CrossRefGoogle Scholar
  26. Griffiths P, Gray R (2001) Darwinism and developmental systems. In: Oyama S, Griffiths P, Gray R (eds) Cycles of contingency. MIT Press, Cambridge, pp 195–218Google Scholar
  27. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471CrossRefGoogle Scholar
  28. Heijtz RD, Wang S, Anuard F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052CrossRefGoogle Scholar
  29. Hill DA, Arthis D (2010) Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 28:623–667CrossRefGoogle Scholar
  30. Hooper LV (2004) Bacterial contributions to mammalian gut development. Trends Microbiol 12(3):129–134CrossRefGoogle Scholar
  31. Hooper LV (2005) Resident bacteria as inductive signals in mammalian gut development. In: McFall-Ngai MJ, Henderson B, Ruby EG (eds) The influence of cooperative bacteria on animal host biology. Cambridge University Press, Cambridge, pp 249–264Google Scholar
  32. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118CrossRefGoogle Scholar
  33. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884CrossRefGoogle Scholar
  34. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215CrossRefGoogle Scholar
  35. Kereszt A, Mergaert P, Maroti G, Kondorosi E (2011) Innate immunity effectors and virulence factors in symbiosis. Curr Opin Microbiol 14:76–81CrossRefGoogle Scholar
  36. Kondorosi E, Kondorosi A (2004) Endoreduplication and activation of the anaphase-promoting complex during symbiotic cell development. FEBS Lett 567:152–157CrossRefGoogle Scholar
  37. Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306:1186–1188CrossRefGoogle Scholar
  38. Kremer N, Charif D, Henri H, Bataille M, Prévost G, Kraaijeveld K, Vavre F (2009) A new case of Wolbachia dependence in the genus Asobara: evidence for parthenogenesis induction in Asobara japonica. Heredity 103(3):248–256CrossRefGoogle Scholar
  39. Lanning DK, Rhee K-J, Knight KL (2005) Intestinal bacteria and development of the B-lymphocyte repertoire. Trends Immunol 26(8):419–425CrossRefGoogle Scholar
  40. Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773CrossRefGoogle Scholar
  41. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743CrossRefGoogle Scholar
  42. Lewontin R (2000) The triple helix: gene, organism and environment. Harvard University Press, Cambridge, MAGoogle Scholar
  43. Love AC (2008) Explaining the ontogeny of form: philosophical issues. In: Sarkar S, Plutynski A (eds) A companion to the philosophy of biology. Blackwell, Malden, pp 223–247Google Scholar
  44. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118CrossRefGoogle Scholar
  45. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625CrossRefGoogle Scholar
  46. McFall-Ngai M (2002) Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1–14CrossRefGoogle Scholar
  47. McFall-Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254:1491–1494CrossRefGoogle Scholar
  48. McFall-Ngai M, Henderson B, Ruby EG (eds) (2005) The influence of cooperative bacteria on animal host biology. Cambridge University Press, CambridgeGoogle Scholar
  49. McFall-Ngai M, Nyholm SV, Castillo MG (2010) The role of the immune system in the initiation and persistence of the Euprymna scolopes-Vibrio fischeri symbiosis. Semin Immunol 22(1):48–53CrossRefGoogle Scholar
  50. Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci USA 97:10231–10235CrossRefGoogle Scholar
  51. Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ (2009) Recognition between symbiotic Vibrio fischeri and the hemocytes of Euprymna scolopes. Environ Microbiol 11(2):483–493CrossRefGoogle Scholar
  52. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Reports 7(7):688–693CrossRefGoogle Scholar
  53. O’Neill SL, Hoffmann AA, Werren JH (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, New YorkGoogle Scholar
  54. Oyama S ([1985] 2000) The ontogeny of information. Duke University Press, DurhamGoogle Scholar
  55. Oyama S, Griffiths P, Gray R (eds) (2001) Cycles of contingency: developmental systems and evolution. MIT Press, Cambridge, MAGoogle Scholar
  56. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):1556–1573CrossRefGoogle Scholar
  57. Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90CrossRefGoogle Scholar
  58. Pradeu T (2009) Les Limites du Soi: Immunologie et identité biologique. Montreal: Presses Universitaires de Montreal. English translation: The limits of the self: immunology and biological identity (in press 2012). Oxford University Press, New YorkGoogle Scholar
  59. Pradeu T (2010a) What is an organism? An immunological answer. Hist Philos Life Sci 32(2–3):247–267Google Scholar
  60. Pradeu T (2010b) The organism in developmental systems theory. Biol Theory 5:216–222CrossRefGoogle Scholar
  61. Pradeu T, Alizon S (in preparation) Ecologizing immunologyGoogle Scholar
  62. Pradeu T, Carosella ED (2006a) The self model and the conception of biological identity in immunology. Biol Philos 21(2):235–252CrossRefGoogle Scholar
  63. Pradeu T, Carosella ED (2006b) On the definition of a criterion of immunogenicity. Proc Natl Acad Sci USA 103(47):17858–17861CrossRefGoogle Scholar
  64. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323CrossRefGoogle Scholar
  65. Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–782CrossRefGoogle Scholar
  66. Ryu JH, Ha EM, Lee WJ (2010) Innate immunity and gut-microbe mutualism in Drosophila. Dev Comp Immunol 34(4):369–376CrossRefGoogle Scholar
  67. Salzman NH (2011) Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol 14:99–105CrossRefGoogle Scholar
  68. Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F, Di Santo JP, Eberl G (2010) Lineage relationship analysis of RORγt+. Science 330:665–669CrossRefGoogle Scholar
  69. Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT (2009) Ecological immunology. Philos Trans R Soc B 364:3–14CrossRefGoogle Scholar
  70. Smith C, McCoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19:59–69CrossRefGoogle Scholar
  71. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99:15451–15455CrossRefGoogle Scholar
  72. Stougaerd J (2000) Regulators and regulation of legume root nodule development. Plant Physiol 124:531–539CrossRefGoogle Scholar
  73. Tong D, Rozas NS, Oakley TH, Mitchell J, Colley NJ, McFall-Ngai MJ (2009) Evidence for light perception in a bioluminescent organ. Proc Natl Acad Sci USA 106:9836–9841CrossRefGoogle Scholar
  74. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810CrossRefGoogle Scholar
  75. Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126CrossRefGoogle Scholar
  76. Waddington CH (1959) Canalization of development and genetic assimilation of an acquired character. Nature 183:1654–1655CrossRefGoogle Scholar
  77. Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long S (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327:1126–1129CrossRefGoogle Scholar
  78. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New YorkGoogle Scholar
  79. Wilks M (2007) Bacteria and early human development. Early Hum Dev 83:165–170CrossRefGoogle Scholar
  80. Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459CrossRefGoogle Scholar
  81. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735CrossRefGoogle Scholar

Copyright information

© Konrad Lorenz Institute 2011

Authors and Affiliations

  1. 1.Philosophy DepartmentParis-Sorbonne UniversityParisFrance
  2. 2.Institut d’Histoire et de la Philosophie des Sciences et TechniquesInstitut universitaire de FranceParisFrance

Personalised recommendations