, Volume 12, Issue 3, pp 71–79 | Cite as

Apple biophenol synergistic complex and its potential benefits for cardiovascular health

  • Valentina Bortolotto
  • Cristiana PiangiolinoEmail author


Most of cardiovascular disease (CVD) events are caused by risk factors that can be controlled, treated or modified. Amongst these factors are some modifiable ones, such as hypertension, tobacco use, hyperglycaemia and diabetes, physical inactivity, unhealthy diet, cholesterol/lipids, overweight and obesity. Others, such as age, gender and family history, cannot be changed.

Recent clinical trials and epidemiological studies show that prevention, based on lifestyle and social change, starting with conscious and responsible nutrition, aims at delaying the use of drugs in people in high-risk categories.

Based on this concept, we investigated some functional features of an active ingredient, called SelectSIEVE® Apple PCQ. It is composed of purified biophenols from apple, including phloridzin, quercetin and chlorogenic acid. The high antioxidant activity of Apple PCQ® has been tested by the ORAC, DPPH, ABTS and Folin-Ciocalteau assays with respect to pure standard compounds and other commercially available extracts. Furthermore, we observed in vitro the modulation of antioxidant enzymes like superoxide dismutase, catalase and glutathione peroxidase whose activity improved by 22.14%, 31.65% and 18.41% respectively for Apple PCQ® compared to the control. Another in vitro test showed a strong inhibition degree of α-amylase and α-glucosidase enzymes, by 74% and 92% respectively, for Apple PCQ® compared to the control. These results lay the foundations for a potential regulation of glucose metabolism that will be confirmed by clinical studies.


apple phloridzin quercetin chlorogenic acid CVD glucose metabolism diabetes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grundy SM, Pasternak R, Greenland P, Smith S, Fuster Jr, Fuster V (1999) Assessment of Cardiovascular Risk by Use of Multiple-Risk-Factor Assessment Equations: A Statement for Healthcare Professionals From the American Heart Association and the American College of Cardiology. Circulation 100:1481–1492. doi: 10.1161/01.CIR.100.13.1481CrossRefGoogle Scholar
  2. 2.
    Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:5.CrossRefGoogle Scholar
  3. 3.
    Wolfe KL, Liu RH (2003) Apple peels as value-added food ingredient. J Agric Food Chem 51(6):1676–83.CrossRefGoogle Scholar
  4. 4.
    Lu Y, Foo LY (2000) Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem 68(1):81–85.CrossRefGoogle Scholar
  5. 5.
    Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38. doi: 10.1002/dmrr.532CrossRefGoogle Scholar
  6. 6.
    Johnston KL, Clifford MN, Morgan LM (2002) Possible role for apple juice phenolic compounds in the acute modification of glucose tolerance and gastrointestinal hormone secretion in humans. J Sci Food Agric 82:1800–1805. doi: 10.1002/jsfa.1264.CrossRefGoogle Scholar
  7. 7.
    Frerichs H, Ball EG (1964) Studies on the metabolism of adipose tissue. XVI. Inhibition by phlorizin and phloretin of the insulin-stimulated uptake of glucose. Biochemistry 3:981–985.CrossRefGoogle Scholar
  8. 8.
    Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RS, de Souza HM (2008) Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 26(3):320–328.CrossRefGoogle Scholar
  9. 9.
    Van Schaftingen E, Gerin I (2002) The glucose-6-phosphatase system. Biochem J 362(Pt3):513–532.CrossRefGoogle Scholar
  10. 10.
    Hollman PCH (2004) Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol 42(S):74–83.CrossRefGoogle Scholar
  11. 11.
    Juźwiak S, Wojcicki J, Mokrzycki K, Marchlewicz M, Bialecka M, Wenda-Rozewicka L, Gawronska-Szklarz B, Drozdzik M (2005) Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacol Rep 57(5):604–609.Google Scholar
  12. 12.
    Hyson D, Studebaker-Hallman D, Davis PA, Gershwin ME (2000) Apple Juice Consumption Reduces Plasma Low-Density Lipoprotein Oxidation in Healthy Men and Women. J Med Food 3(4):159–166. doi: 10.1089/jmf.2000.3.159.CrossRefGoogle Scholar
  13. 13.
    Knekt P, Kumpulainen J, rvinen RJ, Rissanen H, vaara MH, Reunanen A, Hakulinen T, Aromaa A (2002) Food intake and risk of chronic diseases. Am J Clin Nutr 76(3):560–568.Google Scholar
  14. 14.
    Lam CK, Zhang Z, Yu H, Tsang SY, Huang Y, Chen ZY (2008) Apple polyphenols inhibit plasma CETP activity and reduce the ratio of non-HDL to HDL cholesterol. Mol Nutr Food Res 52(8):950–958. doi: 10.1002/mnfr.200700319.CrossRefGoogle Scholar
  15. 15.
    Song L, Xu M, Lopes-Virella MF, Huang Y (2001) Quercetin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells through extracellular signal-regulated kinase. Arch Biochem Biophys 391(1):72–78.CrossRefGoogle Scholar
  16. 16.
    Guo Y, Bruno RS (2011) Vasoprotective activities of quercetin. Agro FOOD 22(1):16–19.Google Scholar
  17. 17.
    Ahn J, Lee H, Kim S, Park J, Ha T (2008) The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373(4):545–549. doi: 10.1016/j.bbrc.2008.06.077.CrossRefGoogle Scholar
  18. 18.
    Yang JY, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park HJ, Baile CA (2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82(19–20):1032–1039. doi: 10.1016/ j.lfs.2008.03.003.CrossRefGoogle Scholar
  19. 19.
    Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, Leighton F (2005) Myricetin, quercetin and catechingallate inhibit glucose uptake in isolated rat adipocytes. Biochem j 386:471–478. doi: 10.1042/BJ20040703.CrossRefGoogle Scholar
  20. 20.
    Puoci F, Iemma F, Curcio M, Parisi OI, Cirillo G, Spizzirri UG, Picci N (2008) Synthesis of Methacrylic-Ferulic acid Copolymer with antioxidant properties by single-step free radical polymerization. J Agric Food Chem 56:10646–10650.CrossRefGoogle Scholar
  21. 21.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237.CrossRefGoogle Scholar
  22. 22.
    Curcio M, Puoci F, Iemma F, Parisi OI, Cirillo G, Spizzirri UG, Picci N (2009) Covalent Insertion of Antioxidant Molecules on Chitosan by Free Radical Grafting Procedure. J Agric Food Chem 57:5933–5938.CrossRefGoogle Scholar
  23. 23.
    Prior RL, Wu X, Schaich K (2005) Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements J Agric Food Chem 53:4290–4302.CrossRefGoogle Scholar
  24. 24.
    Baldisserotto A, Malisardi G, Scalambra E, Andreotti E, Romagnoli C, Vicentini CB, Manfredini S, Vertuani S (2012) Synthesis, Antioxidant and Antimicrobial Activity of a New Phloridzin Derivative for Dermo-Cosmetic Applications. Molecules 17:13275–13289.CrossRefGoogle Scholar
  25. 25.
    Ishimoto H, Tai A, Yoshimura M, Amakura Y, Yoshida T, Hatano T, Ito H (2012) Antioxidative properties of functional polyphenols and their metabolites assessed by an ORAC assay. Biosci Biotechnol Biochem 76(2):395–399.CrossRefGoogle Scholar
  26. 26.
    Hou W, Li Y, Zhang Q, Wei X, Peng A, Chen L, Wei Y (2009) Triterpene Acids Isolated from Lagerstroemia speciosa Leaves as α-Glucosidase Inhibitors. Phytother Res 23:614–618.CrossRefGoogle Scholar
  27. 27.
    Jo SH, Ka EH, Lee HS, Apostolidis E, Jang HD, Kwon Y-I (2010) Comparison of Antioxidant Potential and Rat intestinal α-Glucosidases inhibitory Activities of Quercetin, Rutin, and Isoquercetin. Int J Applied Res Nat Prod 2(4):52–60.Google Scholar
  28. 28.
    Tadera K, Minami Y, Takamatsu K, Matsuoka T (2006) Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitaminol 52(2):149–153.CrossRefGoogle Scholar
  29. 29.
    Barbosa AC, Pinto Mda S, Sarkar D, Ankolekar C, Greene D, Shetty K (2010) Varietal influences on antihyperglycaemia properties of freshly harvested apples using in vitro assay models. J Med Food 13(6):1313–1323. doi: 10.1089/jmf.2009.0273.CrossRefGoogle Scholar
  30. 30.
    Kuritzky L, Samraj G, Quillen DM (1999) Improving management of type 2 diabetes mellitus: 1. alpha-glucosidase inhibitors. Hosp Pract 34(10):43–46.Google Scholar

Copyright information

© CEC editore - Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Principium Europe srlSolaro (MI)Italy

Personalised recommendations