Progress in Artificial Intelligence

, Volume 8, Issue 4, pp 441–452 | Cite as

Adaptive cooperation of multi-swarm particle swarm optimizer-based hidden Markov model

  • Abdellatif El Afia
  • Oussama AounEmail author
  • Salvador Garcia
Regular Paper


The classical PSO algorithm can be affected with premature convergence when it comes to more complex optimization problems; the resolution easily can be trapped into local optima. The primary concern is to accelerate the convergence speed and to prevent the local optima solutions. To defeat these weaknesses and to enhance the overall performances, a new technique is offered building a dynamic multi-swarm design with cooperative rules based on a machine-learning design, namely the hidden Markov classification model. In this approach, a new design with multiple processes implemented inside the PSO that are the control of parameters adaptively with the improvement in the topological structure by setting a multi-swarm layer. Another process of information exchange between swarms is also considered. According to an HMM classification, the entire swarm will be then divided into dynamic cooperating sub-swarms. The size of each sub-swarm is going to be also adjusted at each iteration to suit the search stage. All sub-swarms share information between each other in order to ensure the best exploration of the search space and most effective exploitation. Adaptiveness of both acceleration coefficient and inertia weight strategies is customized with the account of the multi-swarm dynamic evolution and the history of achievements. The approach is simulated and compared by experimental tests to the best-known state of the art.


Cooperative particle swarm optimization Multi-swarm Population control Hidden Markov model 



  1. 1.
    Aoun, O., El Afia, A., Garcia, S.: Self inertia weight adaptation for the particle swarm optimization. In: Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications, p. 8. ACM (2018)Google Scholar
  2. 2.
    Aoun, O., Sarhani, M., El Afia, A.: Hidden markov model classifier for the adaptive particle swarm optimization. In: The XI Metaheuristics International Conference (MIC), Agadir, Morocco, 7–10 (2015)Google Scholar
  3. 3.
    Aoun, O. Sarhani, M., El Afia, A.: Investigation of hidden Markov model for the tuning of metaheuristics in airline scheduling problems. IFAC-PapersOnLine. In: 14th IFAC Symposium on Control in Transportation Systems CTS 2016, vol. 49, issue 3, pp. 347–352 (2016)Google Scholar
  4. 4.
    Aoun, O., Sarhani,M., El Afia, A.: Hidden Markov model classifier for the adaptive particle swarm optimization. In: Recent Developments in Metaheuristics, pp. 1–15. Springer (2018)Google Scholar
  5. 5.
    Aoun, O., El Afia, A., Sarhani, M.: Hidden Markov model control of inertia weight adaptation for particle swarm optimization. IFAC-PapersOnLine 50(1), 9997–10002 (2017)CrossRefGoogle Scholar
  6. 6.
    Aoun, O., Sarhani, M., El Afia, A.: Particle swarm optimisation with population size and acceleration coefficients adaptation using hidden Markov model state classification. Int. J. Metaheuristics 7(1), 1–29 (2018)CrossRefGoogle Scholar
  7. 7.
    Aydin, M.: Coordinating metaheuristic agents with swarm intelligence. J. Intell. Manuf. 23(4), 991–999 (2012)CrossRefGoogle Scholar
  8. 8.
    Blackwell, T., Branke, J., et al.: Multi-swarm optimization in dynamic environments. In: EvoWorkshops, vol. 3005, pp. 489–500. Springer (2004)Google Scholar
  9. 9.
    Cheung, N.J., Ding, X.-M., Shen, H.-B.: Optifel: a convergent heterogeneous particle swarm optimization algorithm for takagi–sugeno fuzzy modeling. IEEE Trans. Fuzzy Syst. 22(4), 919–933 (2014)CrossRefGoogle Scholar
  10. 10.
    Chou, C.-W., Lin, J.-H., Yang, C.-H., Tsai, H.-L., Ou, Y.-H.: Constructing a markov chain on particle swarm optimizer. In: 2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA), pp. 13–18. IEEE (2012)Google Scholar
  11. 11.
    Chou, C.-W., Lin, J.-H., Jeng, R.: Markov chain and adaptive parameter selection on particle swarm optimizer. Int. J. Soft Comput. 4(2), 1 (2013)CrossRefGoogle Scholar
  12. 12.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  13. 13.
    Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and hidden Markov models: probability distributions, learning models and induction algorithms. Pattern Recogn. 38(9), 1349–1371 (2005)CrossRefGoogle Scholar
  14. 14.
    Durand, N., Alliot, J.-M.: Genetic crossover operator for partially separable functions. In: GP 1998, 3rd Annual Conference on Genetic Programming, (1998)Google Scholar
  15. 15.
    El Afia, A., Sarhani, M., Aoun, O.: A probabilistic finite state machine design of particle swarm optimization. In: Bioinspired Heuristics for Optimization, pp. 185–201. Springer (2019)Google Scholar
  16. 16.
    Engelbrecht, A.P.: Heterogeneous particle swarm optimization. In: International Conference on Swarm Intelligence, pp. 191–202. Springer (2010)Google Scholar
  17. 17.
    Jiang, W., Zhang, Y., Wang, R.: Comparative study on several pso algorithms. In: Control and Decision Conference (2014 CCDC), The 26th Chinese, pp. 1117–1119 (2014)Google Scholar
  18. 18.
    Jianxiu, H., Jianchao, Z.: A two-order particle swarm optimization model. J. Comput. Res. Dev. 11, 004 (2007)Google Scholar
  19. 19.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference Neural Networks, IEEE, pp. 1942–8 (1995)Google Scholar
  20. 20.
    Li, J., Xiao, X.: Multi-swarm and multi-best particle swarm optimization algorithm. In: 7th World Congress on Intelligent Control and Automation. WCICA 2008, pp. 6281–6286. IEEE (2008)Google Scholar
  21. 21.
    Li, C., Yang, S., Nguyen, T.T.: A self-learning particle swarm optimizer for global optimization problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(3), 627–646 (2012)CrossRefGoogle Scholar
  22. 22.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evolut. Comput. 10(3), 281–295 (2006)CrossRefGoogle Scholar
  23. 23.
    Li-li, L.I.U., Xing-bao, G.A.O.: An adaptive simulation of bacterial foraging algorithm. Basic Sci. J. Text. Univ. 4, 022 (2012)Google Scholar
  24. 24.
    Liu, Yu., Qin, Z., Shi, Z., Jiang, L.: Center particle swarm optimization. Neurocomputing 70(4–6), 672–679 (2007)CrossRefGoogle Scholar
  25. 25.
    Mirjalili, S., Lewis, A., Safa Sadiq, A.: Autonomous particles groups for particle swarm optimization. Arab. J. Sci. Eng. 39(6), 4683–4697 (2014)CrossRefGoogle Scholar
  26. 26.
    Monett Diaz D. Agent-based configuration of (metaheuristic) algorithms. PhD thesis, Humboldt University of Berlin (2005)Google Scholar
  27. 27.
    Montes De Oca, M.A., Stützle, T., Van den Enden, K., Dorigo, M.: Incremental social learning in particle swarms. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(2), 368–384 (2011)CrossRefGoogle Scholar
  28. 28.
    Niu, B., Zhu, Y., He, X., Henry, W.: Mcpso: a multi-swarm cooperative particle swarm optimizer. Appl. Math. Comput. 185(2), 1050–1062 (2007)zbMATHGoogle Scholar
  29. 29.
    Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  30. 30.
    Schaeffer, J., Lu, P., Szafron, D., Lake, R.: A re-examination of brute-force search. In: Proceedings of the AAAI Fall Symposium on Games: Planning and Learning, pp. 51–58 (1993)Google Scholar
  31. 31.
    Stützle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. In: Handbook of metaheuristics, pp. 541–579. Springer (2019)Google Scholar
  32. 32.
    Sun, J., Lai, C.-H., Wu, X.-J.: Particle Swarm Optimisation: Classical and Quantum Perspectives. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  33. 33.
    van den Bergh, F., Engelbrecht, A.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)CrossRefGoogle Scholar
  34. 34.
    Wang, S., Chen, M., Huang, D., Guo, X., Wang, C.: Dream effected particle swarm optimization algorithm. J. Inf. Comput. Sci. 11(15), 5631 (2014)CrossRefGoogle Scholar
  35. 35.
    Wu, Z.: Optimization of distribution route selection based on particle swarm algorithm. Int. J. Simul. Model 13(2), 230–243 (2014)CrossRefGoogle Scholar
  36. 36.
    Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans. Evolut. Comput. 14, 959–974 (2010)CrossRefGoogle Scholar
  37. 37.
    Zhan, Z.-H., Zhang, J., Li, Y., Chung, H.S.-H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(6), 1362–1381 (2009)CrossRefGoogle Scholar
  38. 38.
    Zhang, J., Ding, X.: A multi-swarm self-adaptive and cooperative particle swarm optimization. Eng. Appl. Artif. Intell. 24(6), 958–967 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mohammed V UniversityRabatMorocco
  2. 2.University of GranadaGranadaSpain

Personalised recommendations