Advertisement

Granular-based decomposition of complex fuzzy context and its analysis

  • Prem Kumar SinghEmail author
Regular Paper
  • 13 Downloads

Abstract

The mathematical paradigm of complex fuzzy concept lattice gives a platform to analyze the complex fuzzy attributes. The problem is addressed by several reviewers about applications of complex fuzzy concept lattice and its decomposition at user-required information granules. To resolve this problem, one of the methods is introduced using the chosen subset of attributes and properties of granulation defined for amplitude and phase term, independently. One of the real-life applications is also given for analyzing the potential manuscripts for the publications in journal based on changes in reviewer feedback at given phase of time.

Keywords

Complex fuzzy set Complex fuzzy graph Complex fuzzy concepts Formal concept analysis (FCA) Granular computing Knowledge representation 

Notes

Acknowledgements

Author thanks the anonymous reviewers and editor for their valuable time and suggestions to improve the quality of this paper.

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

References

  1. 1.
    Alkouri, A.S., Salleh, A.R.: Linguistic variables, hedges and several distances on complex fuzzy sets. J. Intell. Fuzzy Syst. 26, 2527–2535 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ali, M., Smarandache, F.: Complex neutrosophic set. Neural Comput. Appl. 28(7), 1817–1834 (2017)CrossRefGoogle Scholar
  3. 3.
    Aswani Kumar, Ch., Srinivas, S.: Concept lattice reduction using fuzzy K-means clustering. Expert Syst. Appl. 37(3), 2696–2704 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Alkouri, AbD Ulazeez M., Salleh, Abdul Razak.: Complex fuzzy soft multisets. The 2014 UKM FST Postgraduate Colloquium. In: Proceedings of 2014 AIP Conference, vol. 614, pp. 955–961 (2014).  https://doi.org/10.1063/1.4895330.
  5. 5.
    Burusco, A., Fuentes-Gonzales, R.: The study of L-fuzzy concept lattice. Matheware Soft Comput. 3, 209–218 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dick, S.: Toward complex fuzzy logic. IEEE Trans. Fuzzy Syst. 13(3), 405–414 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dick, S., Yager, R.R., Yazdanbakhsh, O.: On pythagorean and complex fuzzy set operations. IEEE Trans. Fuzzy Syst. 24, 1009–1021 (2016)CrossRefGoogle Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation, p. 1999. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ghosh, P., Kundu, K., Sarkar, : Fuzzy graph representation of a fuzzy concept lattice. Fuzzy Sets Syst. 161, 1669–1675 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, C., Chan, F.T.: Knowledge discovery by an intelligent approach using complex fuzzy sets. Lect. Notes Comput. Sci. 7196, 320–329 (2012)CrossRefGoogle Scholar
  12. 12.
    Li, J.H., Mei, C., Lv, Y.: Knowledge reduction in real decision formal contexts. Inf. Sci. 189, 191–207 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lindig, C.: Fast concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 152–161. Springer, Heidelberg (2000)Google Scholar
  14. 14.
    Singh, P.K., Aswani Kumar, Ch.: A method for decomposition of fuzzy formal context. Procedia Eng. 38, 1852–1857 (2012)CrossRefGoogle Scholar
  15. 15.
    Singh, P.K., Gani, A.: Fuzzy concept lattice reduction using Shannon entropy and Huffman coding. J. Appl. Non Classic Logic 25(2), 101–119 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Singh, P.K.: Complex vague set based concept lattice. Chaos Solitons Fractals 95, 145–153 (2017a)CrossRefzbMATHGoogle Scholar
  17. 17.
    Singh, P.K., Aswani Kumar, Ch.: Concept lattice reduction using different subset of attributes as information granules. Granul. Comput. 2(3), 159–173 (2017b)CrossRefGoogle Scholar
  18. 18.
    Singh, P.K.: Complex neutrosophic concept lattice and its applications to air quality analysis. Chaos Solitons Fractals 109, 206–213 (2018a)CrossRefGoogle Scholar
  19. 19.
    Singh, Prem Kumar, Selvachandra, G., Aswani Kumar, Ch.: Interval-valued complex fuzzy concept lattice and its granular decomposition. Adv. Intell. Syst. Comput. 740, 275–283 (2018b)Google Scholar
  20. 20.
    Singh, P.K..: Complex fuzzy concept lattice. Neural Process. Lett. (2018c).  https://doi.org/10.1007/s11063-018-9884-7
  21. 21.
    Singh, P.K.: Complex vague contexts analysis using Cartesian products and granulation. Granul. Comput (2019).  https://doi.org/10.1007/s41066-018-0136-z
  22. 22.
    Singh, P.K.: Bipolar \(\delta \)-equal complex fuzzy concept lattice with its application. Neural Comput. Appl. (2019)  https://doi.org/10.1007/s00521-018-3936-9
  23. 23.
    Qudah, Y.A., Hassan, N.: Operations on complex multi-fuzzy sets. J. Intell. Fuzzy Syst. (2017).  https://doi.org/10.3233/JIFS-162428
  24. 24.
    Ramot, D., Friedman, M., Langholz, G., Kandel, A.: Complex fuzzy logic. IEEE Trans. Fuzzy Syst. 11(4), 450–461 (2003)CrossRefGoogle Scholar
  25. 25.
    Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 10(2), 171–186 (2005)CrossRefGoogle Scholar
  26. 26.
    Selvachandran, G., Maji, P.K., Abed, I.E., Salleh, A.R.: Complex vague soft sets and its distance measures. J. Intell. Fuzzy Syst. 31, 55–68 (2016)CrossRefzbMATHGoogle Scholar
  27. 27.
    Selvachandran, G., Singh, Prem Kumar: Interval-valued complex fuzzy soft set and its application. Int. J. Uncertain. Quantif. 8(2), 101–117 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Song, Y., Hu, J.: A group decision support model based on incomplete hesitant fuzzy linguistic preference relations for mine disaster rescue. Prog. Artif. Intell. 7(3), 213–224 (2018)CrossRefGoogle Scholar
  29. 29.
    Tamir, D.E., Rishe, N.D., Kandel, A.: Complex Fuzzy Sets and Complex Fuzzy Logic: An Overview of Theory and Applications. Fifty Years of Fuzzy Logic and Its Applications, pp. 661–681. Springer, Cham (2015)zbMATHGoogle Scholar
  30. 30.
    Thirunavukarasu, P., Suresh, R., Viswanathan, K.K.: Energy of a complex fuzzy graph. Int. J. Math. Sci. Eng. Appl. (IJMSEA) 10(1), 243–248 (2016)Google Scholar
  31. 31.
    Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Am. Math. Soc. 45, 335–354 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel Dordrect, Boston (1982)CrossRefGoogle Scholar
  33. 33.
    Yazdanbakhsh, O., Dick, S.: A Systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst. 338, 1–22 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, G., Dillon, T.S., Cai, K.Y., Ma, J., Lu, J.: Operation properties and \(\delta \)-equalities of complex fuzzy sets. Int. J. Approx. Reason. 50, 1227–1249 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Amity Institute of Information TechnologyAmity UniversityNoidaIndia

Personalised recommendations